peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_testing.py
import atexit | |
import os | |
import unittest | |
import warnings | |
import numpy as np | |
import pytest | |
from scipy import sparse | |
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.utils import _IS_WASM | |
from sklearn.utils._testing import ( | |
TempMemmap, | |
_convert_container, | |
_delete_folder, | |
_get_warnings_filters_info_list, | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_no_warnings, | |
assert_raise_message, | |
assert_raises, | |
assert_raises_regex, | |
assert_run_python_script_without_output, | |
check_docstring_parameters, | |
create_memmap_backed_data, | |
ignore_warnings, | |
raises, | |
set_random_state, | |
turn_warnings_into_errors, | |
) | |
from sklearn.utils.deprecation import deprecated | |
from sklearn.utils.fixes import ( | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
parse_version, | |
sp_version, | |
) | |
from sklearn.utils.metaestimators import available_if | |
def test_set_random_state(): | |
lda = LinearDiscriminantAnalysis() | |
tree = DecisionTreeClassifier() | |
# Linear Discriminant Analysis doesn't have random state: smoke test | |
set_random_state(lda, 3) | |
set_random_state(tree, 3) | |
assert tree.random_state == 3 | |
def test_assert_allclose_dense_sparse(csr_container): | |
x = np.arange(9).reshape(3, 3) | |
msg = "Not equal to tolerance " | |
y = csr_container(x) | |
for X in [x, y]: | |
# basic compare | |
with pytest.raises(AssertionError, match=msg): | |
assert_allclose_dense_sparse(X, X * 2) | |
assert_allclose_dense_sparse(X, X) | |
with pytest.raises(ValueError, match="Can only compare two sparse"): | |
assert_allclose_dense_sparse(x, y) | |
A = sparse.diags(np.ones(5), offsets=0).tocsr() | |
B = csr_container(np.ones((1, 5))) | |
with pytest.raises(AssertionError, match="Arrays are not equal"): | |
assert_allclose_dense_sparse(B, A) | |
def test_assert_raises_msg(): | |
with assert_raises_regex(AssertionError, "Hello world"): | |
with assert_raises(ValueError, msg="Hello world"): | |
pass | |
def test_assert_raise_message(): | |
def _raise_ValueError(message): | |
raise ValueError(message) | |
def _no_raise(): | |
pass | |
assert_raise_message(ValueError, "test", _raise_ValueError, "test") | |
assert_raises( | |
AssertionError, | |
assert_raise_message, | |
ValueError, | |
"something else", | |
_raise_ValueError, | |
"test", | |
) | |
assert_raises( | |
ValueError, | |
assert_raise_message, | |
TypeError, | |
"something else", | |
_raise_ValueError, | |
"test", | |
) | |
assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) | |
# multiple exceptions in a tuple | |
assert_raises( | |
AssertionError, | |
assert_raise_message, | |
(ValueError, AttributeError), | |
"test", | |
_no_raise, | |
) | |
def test_ignore_warning(): | |
# This check that ignore_warning decorator and context manager are working | |
# as expected | |
def _warning_function(): | |
warnings.warn("deprecation warning", DeprecationWarning) | |
def _multiple_warning_function(): | |
warnings.warn("deprecation warning", DeprecationWarning) | |
warnings.warn("deprecation warning") | |
# Check the function directly | |
assert_no_warnings(ignore_warnings(_warning_function)) | |
assert_no_warnings(ignore_warnings(_warning_function, category=DeprecationWarning)) | |
with pytest.warns(DeprecationWarning): | |
ignore_warnings(_warning_function, category=UserWarning)() | |
with pytest.warns() as record: | |
ignore_warnings(_multiple_warning_function, category=FutureWarning)() | |
assert len(record) == 2 | |
assert isinstance(record[0].message, DeprecationWarning) | |
assert isinstance(record[1].message, UserWarning) | |
with pytest.warns() as record: | |
ignore_warnings(_multiple_warning_function, category=UserWarning)() | |
assert len(record) == 1 | |
assert isinstance(record[0].message, DeprecationWarning) | |
assert_no_warnings( | |
ignore_warnings(_warning_function, category=(DeprecationWarning, UserWarning)) | |
) | |
# Check the decorator | |
def decorator_no_warning(): | |
_warning_function() | |
_multiple_warning_function() | |
def decorator_no_warning_multiple(): | |
_multiple_warning_function() | |
def decorator_no_deprecation_warning(): | |
_warning_function() | |
def decorator_no_user_warning(): | |
_warning_function() | |
def decorator_no_deprecation_multiple_warning(): | |
_multiple_warning_function() | |
def decorator_no_user_multiple_warning(): | |
_multiple_warning_function() | |
assert_no_warnings(decorator_no_warning) | |
assert_no_warnings(decorator_no_warning_multiple) | |
assert_no_warnings(decorator_no_deprecation_warning) | |
with pytest.warns(DeprecationWarning): | |
decorator_no_user_warning() | |
with pytest.warns(UserWarning): | |
decorator_no_deprecation_multiple_warning() | |
with pytest.warns(DeprecationWarning): | |
decorator_no_user_multiple_warning() | |
# Check the context manager | |
def context_manager_no_warning(): | |
with ignore_warnings(): | |
_warning_function() | |
def context_manager_no_warning_multiple(): | |
with ignore_warnings(category=(DeprecationWarning, UserWarning)): | |
_multiple_warning_function() | |
def context_manager_no_deprecation_warning(): | |
with ignore_warnings(category=DeprecationWarning): | |
_warning_function() | |
def context_manager_no_user_warning(): | |
with ignore_warnings(category=UserWarning): | |
_warning_function() | |
def context_manager_no_deprecation_multiple_warning(): | |
with ignore_warnings(category=DeprecationWarning): | |
_multiple_warning_function() | |
def context_manager_no_user_multiple_warning(): | |
with ignore_warnings(category=UserWarning): | |
_multiple_warning_function() | |
assert_no_warnings(context_manager_no_warning) | |
assert_no_warnings(context_manager_no_warning_multiple) | |
assert_no_warnings(context_manager_no_deprecation_warning) | |
with pytest.warns(DeprecationWarning): | |
context_manager_no_user_warning() | |
with pytest.warns(UserWarning): | |
context_manager_no_deprecation_multiple_warning() | |
with pytest.warns(DeprecationWarning): | |
context_manager_no_user_multiple_warning() | |
# Check that passing warning class as first positional argument | |
warning_class = UserWarning | |
match = "'obj' should be a callable.+you should use 'category=UserWarning'" | |
with pytest.raises(ValueError, match=match): | |
silence_warnings_func = ignore_warnings(warning_class)(_warning_function) | |
silence_warnings_func() | |
with pytest.raises(ValueError, match=match): | |
def test(): | |
pass | |
class TestWarns(unittest.TestCase): | |
def test_warn(self): | |
def f(): | |
warnings.warn("yo") | |
return 3 | |
with pytest.raises(AssertionError): | |
assert_no_warnings(f) | |
assert assert_no_warnings(lambda x: x, 1) == 1 | |
# Tests for docstrings: | |
def f_ok(a, b): | |
"""Function f | |
Parameters | |
---------- | |
a : int | |
Parameter a | |
b : float | |
Parameter b | |
Returns | |
------- | |
c : list | |
Parameter c | |
""" | |
c = a + b | |
return c | |
def f_bad_sections(a, b): | |
"""Function f | |
Parameters | |
---------- | |
a : int | |
Parameter a | |
b : float | |
Parameter b | |
Results | |
------- | |
c : list | |
Parameter c | |
""" | |
c = a + b | |
return c | |
def f_bad_order(b, a): | |
"""Function f | |
Parameters | |
---------- | |
a : int | |
Parameter a | |
b : float | |
Parameter b | |
Returns | |
------- | |
c : list | |
Parameter c | |
""" | |
c = a + b | |
return c | |
def f_too_many_param_docstring(a, b): | |
"""Function f | |
Parameters | |
---------- | |
a : int | |
Parameter a | |
b : int | |
Parameter b | |
c : int | |
Parameter c | |
Returns | |
------- | |
d : list | |
Parameter c | |
""" | |
d = a + b | |
return d | |
def f_missing(a, b): | |
"""Function f | |
Parameters | |
---------- | |
a : int | |
Parameter a | |
Returns | |
------- | |
c : list | |
Parameter c | |
""" | |
c = a + b | |
return c | |
def f_check_param_definition(a, b, c, d, e): | |
"""Function f | |
Parameters | |
---------- | |
a: int | |
Parameter a | |
b: | |
Parameter b | |
c : | |
This is parsed correctly in numpydoc 1.2 | |
d:int | |
Parameter d | |
e | |
No typespec is allowed without colon | |
""" | |
return a + b + c + d | |
class Klass: | |
def f_missing(self, X, y): | |
pass | |
def f_bad_sections(self, X, y): | |
"""Function f | |
Parameter | |
--------- | |
a : int | |
Parameter a | |
b : float | |
Parameter b | |
Results | |
------- | |
c : list | |
Parameter c | |
""" | |
pass | |
class MockEst: | |
def __init__(self): | |
"""MockEstimator""" | |
def fit(self, X, y): | |
return X | |
def predict(self, X): | |
return X | |
def predict_proba(self, X): | |
return X | |
def score(self, X): | |
return 1.0 | |
class MockMetaEstimator: | |
def __init__(self, delegate): | |
"""MetaEstimator to check if doctest on delegated methods work. | |
Parameters | |
--------- | |
delegate : estimator | |
Delegated estimator. | |
""" | |
self.delegate = delegate | |
def predict(self, X): | |
"""This is available only if delegate has predict. | |
Parameters | |
---------- | |
y : ndarray | |
Parameter y | |
""" | |
return self.delegate.predict(X) | |
def score(self, X): | |
"""This is available only if delegate has score. | |
Parameters | |
--------- | |
y : ndarray | |
Parameter y | |
""" | |
def predict_proba(self, X): | |
"""This is available only if delegate has predict_proba. | |
Parameters | |
--------- | |
X : ndarray | |
Parameter X | |
""" | |
return X | |
def fit(self, X, y): | |
"""Incorrect docstring but should not be tested""" | |
def test_check_docstring_parameters(): | |
pytest.importorskip( | |
"numpydoc", | |
reason="numpydoc is required to test the docstrings", | |
minversion="1.2.0", | |
) | |
incorrect = check_docstring_parameters(f_ok) | |
assert incorrect == [] | |
incorrect = check_docstring_parameters(f_ok, ignore=["b"]) | |
assert incorrect == [] | |
incorrect = check_docstring_parameters(f_missing, ignore=["b"]) | |
assert incorrect == [] | |
with pytest.raises(RuntimeError, match="Unknown section Results"): | |
check_docstring_parameters(f_bad_sections) | |
with pytest.raises(RuntimeError, match="Unknown section Parameter"): | |
check_docstring_parameters(Klass.f_bad_sections) | |
incorrect = check_docstring_parameters(f_check_param_definition) | |
mock_meta = MockMetaEstimator(delegate=MockEst()) | |
mock_meta_name = mock_meta.__class__.__name__ | |
assert incorrect == [ | |
( | |
"sklearn.utils.tests.test_testing.f_check_param_definition There " | |
"was no space between the param name and colon ('a: int')" | |
), | |
( | |
"sklearn.utils.tests.test_testing.f_check_param_definition There " | |
"was no space between the param name and colon ('b:')" | |
), | |
( | |
"sklearn.utils.tests.test_testing.f_check_param_definition There " | |
"was no space between the param name and colon ('d:int')" | |
), | |
] | |
messages = [ | |
[ | |
"In function: sklearn.utils.tests.test_testing.f_bad_order", | |
( | |
"There's a parameter name mismatch in function docstring w.r.t." | |
" function signature, at index 0 diff: 'b' != 'a'" | |
), | |
"Full diff:", | |
"- ['b', 'a']", | |
"+ ['a', 'b']", | |
], | |
[ | |
"In function: " | |
+ "sklearn.utils.tests.test_testing.f_too_many_param_docstring", | |
( | |
"Parameters in function docstring have more items w.r.t. function" | |
" signature, first extra item: c" | |
), | |
"Full diff:", | |
"- ['a', 'b']", | |
"+ ['a', 'b', 'c']", | |
"? +++++", | |
], | |
[ | |
"In function: sklearn.utils.tests.test_testing.f_missing", | |
( | |
"Parameters in function docstring have less items w.r.t. function" | |
" signature, first missing item: b" | |
), | |
"Full diff:", | |
"- ['a', 'b']", | |
"+ ['a']", | |
], | |
[ | |
"In function: sklearn.utils.tests.test_testing.Klass.f_missing", | |
( | |
"Parameters in function docstring have less items w.r.t. function" | |
" signature, first missing item: X" | |
), | |
"Full diff:", | |
"- ['X', 'y']", | |
"+ []", | |
], | |
[ | |
"In function: " | |
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}.predict", | |
( | |
"There's a parameter name mismatch in function docstring w.r.t." | |
" function signature, at index 0 diff: 'X' != 'y'" | |
), | |
"Full diff:", | |
"- ['X']", | |
"? ^", | |
"+ ['y']", | |
"? ^", | |
], | |
[ | |
"In function: " | |
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}." | |
+ "predict_proba", | |
"potentially wrong underline length... ", | |
"Parameters ", | |
"--------- in ", | |
], | |
[ | |
"In function: " | |
+ f"sklearn.utils.tests.test_testing.{mock_meta_name}.score", | |
"potentially wrong underline length... ", | |
"Parameters ", | |
"--------- in ", | |
], | |
[ | |
"In function: " + f"sklearn.utils.tests.test_testing.{mock_meta_name}.fit", | |
( | |
"Parameters in function docstring have less items w.r.t. function" | |
" signature, first missing item: X" | |
), | |
"Full diff:", | |
"- ['X', 'y']", | |
"+ []", | |
], | |
] | |
for msg, f in zip( | |
messages, | |
[ | |
f_bad_order, | |
f_too_many_param_docstring, | |
f_missing, | |
Klass.f_missing, | |
mock_meta.predict, | |
mock_meta.predict_proba, | |
mock_meta.score, | |
mock_meta.fit, | |
], | |
): | |
incorrect = check_docstring_parameters(f) | |
assert msg == incorrect, '\n"%s"\n not in \n"%s"' % (msg, incorrect) | |
class RegistrationCounter: | |
def __init__(self): | |
self.nb_calls = 0 | |
def __call__(self, to_register_func): | |
self.nb_calls += 1 | |
assert to_register_func.func is _delete_folder | |
def check_memmap(input_array, mmap_data, mmap_mode="r"): | |
assert isinstance(mmap_data, np.memmap) | |
writeable = mmap_mode != "r" | |
assert mmap_data.flags.writeable is writeable | |
np.testing.assert_array_equal(input_array, mmap_data) | |
def test_tempmemmap(monkeypatch): | |
registration_counter = RegistrationCounter() | |
monkeypatch.setattr(atexit, "register", registration_counter) | |
input_array = np.ones(3) | |
with TempMemmap(input_array) as data: | |
check_memmap(input_array, data) | |
temp_folder = os.path.dirname(data.filename) | |
if os.name != "nt": | |
assert not os.path.exists(temp_folder) | |
assert registration_counter.nb_calls == 1 | |
mmap_mode = "r+" | |
with TempMemmap(input_array, mmap_mode=mmap_mode) as data: | |
check_memmap(input_array, data, mmap_mode=mmap_mode) | |
temp_folder = os.path.dirname(data.filename) | |
if os.name != "nt": | |
assert not os.path.exists(temp_folder) | |
assert registration_counter.nb_calls == 2 | |
def test_create_memmap_backed_data(monkeypatch): | |
registration_counter = RegistrationCounter() | |
monkeypatch.setattr(atexit, "register", registration_counter) | |
input_array = np.ones(3) | |
data = create_memmap_backed_data(input_array) | |
check_memmap(input_array, data) | |
assert registration_counter.nb_calls == 1 | |
data, folder = create_memmap_backed_data(input_array, return_folder=True) | |
check_memmap(input_array, data) | |
assert folder == os.path.dirname(data.filename) | |
assert registration_counter.nb_calls == 2 | |
mmap_mode = "r+" | |
data = create_memmap_backed_data(input_array, mmap_mode=mmap_mode) | |
check_memmap(input_array, data, mmap_mode) | |
assert registration_counter.nb_calls == 3 | |
input_list = [input_array, input_array + 1, input_array + 2] | |
mmap_data_list = create_memmap_backed_data(input_list) | |
for input_array, data in zip(input_list, mmap_data_list): | |
check_memmap(input_array, data) | |
assert registration_counter.nb_calls == 4 | |
output_data, other = create_memmap_backed_data([input_array, "not-an-array"]) | |
check_memmap(input_array, output_data) | |
assert other == "not-an-array" | |
def test_convert_container( | |
constructor_name, | |
container_type, | |
dtype, | |
superdtype, | |
): | |
"""Check that we convert the container to the right type of array with the | |
right data type.""" | |
if constructor_name in ("dataframe", "series", "index"): | |
# delay the import of pandas within the function to only skip this test | |
# instead of the whole file | |
container_type = container_type() | |
container = [0, 1] | |
container_converted = _convert_container( | |
container, | |
constructor_name, | |
dtype=dtype, | |
) | |
assert isinstance(container_converted, container_type) | |
if constructor_name in ("list", "tuple", "index"): | |
# list and tuple will use Python class dtype: int, float | |
# pandas index will always use high precision: np.int64 and np.float64 | |
assert np.issubdtype(type(container_converted[0]), superdtype) | |
elif hasattr(container_converted, "dtype"): | |
assert container_converted.dtype == dtype | |
elif hasattr(container_converted, "dtypes"): | |
assert container_converted.dtypes[0] == dtype | |
def test_convert_container_categories_pandas(): | |
pytest.importorskip("pandas") | |
df = _convert_container( | |
[["x"]], "dataframe", ["A"], categorical_feature_names=["A"] | |
) | |
assert df.dtypes.iloc[0] == "category" | |
def test_convert_container_categories_polars(): | |
pl = pytest.importorskip("polars") | |
df = _convert_container([["x"]], "polars", ["A"], categorical_feature_names=["A"]) | |
assert df.schema["A"] == pl.Categorical() | |
def test_convert_container_categories_pyarrow(): | |
pa = pytest.importorskip("pyarrow") | |
df = _convert_container([["x"]], "pyarrow", ["A"], categorical_feature_names=["A"]) | |
assert type(df.schema[0].type) is pa.DictionaryType | |
def test_convert_container_raise_when_sparray_not_available(constructor_name, dtype): | |
"""Check that if we convert to sparse array but sparse array are not supported | |
(scipy<1.8.0), we should raise an explicit error.""" | |
container = [0, 1] | |
with pytest.raises( | |
ValueError, | |
match=f"only available with scipy>=1.8.0, got {sp_version}", | |
): | |
_convert_container(container, constructor_name, dtype=dtype) | |
def test_raises(): | |
# Tests for the raises context manager | |
# Proper type, no match | |
with raises(TypeError): | |
raise TypeError() | |
# Proper type, proper match | |
with raises(TypeError, match="how are you") as cm: | |
raise TypeError("hello how are you") | |
assert cm.raised_and_matched | |
# Proper type, proper match with multiple patterns | |
with raises(TypeError, match=["not this one", "how are you"]) as cm: | |
raise TypeError("hello how are you") | |
assert cm.raised_and_matched | |
# bad type, no match | |
with pytest.raises(ValueError, match="this will be raised"): | |
with raises(TypeError) as cm: | |
raise ValueError("this will be raised") | |
assert not cm.raised_and_matched | |
# Bad type, no match, with a err_msg | |
with pytest.raises(AssertionError, match="the failure message"): | |
with raises(TypeError, err_msg="the failure message") as cm: | |
raise ValueError() | |
assert not cm.raised_and_matched | |
# bad type, with match (is ignored anyway) | |
with pytest.raises(ValueError, match="this will be raised"): | |
with raises(TypeError, match="this is ignored") as cm: | |
raise ValueError("this will be raised") | |
assert not cm.raised_and_matched | |
# proper type but bad match | |
with pytest.raises( | |
AssertionError, match="should contain one of the following patterns" | |
): | |
with raises(TypeError, match="hello") as cm: | |
raise TypeError("Bad message") | |
assert not cm.raised_and_matched | |
# proper type but bad match, with err_msg | |
with pytest.raises(AssertionError, match="the failure message"): | |
with raises(TypeError, match="hello", err_msg="the failure message") as cm: | |
raise TypeError("Bad message") | |
assert not cm.raised_and_matched | |
# no raise with default may_pass=False | |
with pytest.raises(AssertionError, match="Did not raise"): | |
with raises(TypeError) as cm: | |
pass | |
assert not cm.raised_and_matched | |
# no raise with may_pass=True | |
with raises(TypeError, match="hello", may_pass=True) as cm: | |
pass # still OK | |
assert not cm.raised_and_matched | |
# Multiple exception types: | |
with raises((TypeError, ValueError)): | |
raise TypeError() | |
with raises((TypeError, ValueError)): | |
raise ValueError() | |
with pytest.raises(AssertionError): | |
with raises((TypeError, ValueError)): | |
pass | |
def test_float32_aware_assert_allclose(): | |
# The relative tolerance for float32 inputs is 1e-4 | |
assert_allclose(np.array([1.0 + 2e-5], dtype=np.float32), 1.0) | |
with pytest.raises(AssertionError): | |
assert_allclose(np.array([1.0 + 2e-4], dtype=np.float32), 1.0) | |
# The relative tolerance for other inputs is left to 1e-7 as in | |
# the original numpy version. | |
assert_allclose(np.array([1.0 + 2e-8], dtype=np.float64), 1.0) | |
with pytest.raises(AssertionError): | |
assert_allclose(np.array([1.0 + 2e-7], dtype=np.float64), 1.0) | |
# atol is left to 0.0 by default, even for float32 | |
with pytest.raises(AssertionError): | |
assert_allclose(np.array([1e-5], dtype=np.float32), 0.0) | |
assert_allclose(np.array([1e-5], dtype=np.float32), 0.0, atol=2e-5) | |
def test_assert_run_python_script_without_output(): | |
code = "x = 1" | |
assert_run_python_script_without_output(code) | |
code = "print('something to stdout')" | |
with pytest.raises(AssertionError, match="Expected no output"): | |
assert_run_python_script_without_output(code) | |
code = "print('something to stdout')" | |
with pytest.raises( | |
AssertionError, | |
match="output was not supposed to match.+got.+something to stdout", | |
): | |
assert_run_python_script_without_output(code, pattern="to.+stdout") | |
code = "\n".join(["import sys", "print('something to stderr', file=sys.stderr)"]) | |
with pytest.raises( | |
AssertionError, | |
match="output was not supposed to match.+got.+something to stderr", | |
): | |
assert_run_python_script_without_output(code, pattern="to.+stderr") | |
def test_convert_container_sparse_to_sparse(constructor_name): | |
"""Non-regression test to check that we can still convert a sparse container | |
from a given format to another format. | |
""" | |
X_sparse = sparse.random(10, 10, density=0.1, format="csr") | |
_convert_container(X_sparse, constructor_name) | |
def check_warnings_as_errors(warning_info, warnings_as_errors): | |
if warning_info.action == "error" and warnings_as_errors: | |
with pytest.raises(warning_info.category, match=warning_info.message): | |
warnings.warn( | |
message=warning_info.message, | |
category=warning_info.category, | |
) | |
if warning_info.action == "ignore": | |
with warnings.catch_warnings(record=True) as record: | |
message = warning_info.message | |
# Special treatment when regex is used | |
if "Pyarrow" in message: | |
message = "\nPyarrow will become a required dependency" | |
warnings.warn( | |
message=message, | |
category=warning_info.category, | |
) | |
assert len(record) == 0 if warnings_as_errors else 1 | |
if record: | |
assert str(record[0].message) == message | |
assert record[0].category == warning_info.category | |
def test_sklearn_warnings_as_errors(warning_info): | |
warnings_as_errors = os.environ.get("SKLEARN_WARNINGS_AS_ERRORS", "0") != "0" | |
check_warnings_as_errors(warning_info, warnings_as_errors=warnings_as_errors) | |
def test_turn_warnings_into_errors(warning_info): | |
with warnings.catch_warnings(): | |
turn_warnings_into_errors() | |
check_warnings_as_errors(warning_info, warnings_as_errors=True) | |