applied-ai-018's picture
Add files using upload-large-folder tool
036a5df verified
raw
history blame
1.54 kB
import collections
import numpy as np
import sklearn.metrics
def f1(predictions, references): # This is a passthrough function
_prediction = predictions[0]
_reference = references[0].split("_")[-1]
string_label = ["False", "True"]
reference = string_label.index(_reference)
prediction = (
string_label.index(_prediction)
if _prediction in string_label
else not bool(reference)
)
return (prediction, reference)
def agg_f1(items):
predictions, references = zip(*items)
references, predictions = np.asarray(references), np.asarray(predictions)
return sklearn.metrics.f1_score(references, predictions)
def em(predictions, references): # This is a passthrough function
_prediction = predictions[0]
_group, _reference = references[0].split("_")
string_label = ["False", "True"]
reference = string_label.index(_reference)
prediction = (
string_label.index(_prediction)
if _prediction in string_label
else not bool(reference)
)
return (_group, prediction, reference)
def agg_em(items):
grouped_values = collections.defaultdict(lambda: ([], []))
for group, prediction, reference in items:
grouped_values[group][0].append(reference)
grouped_values[group][1].append(prediction)
group_scores = []
for group, (targets, predictions) in grouped_values.items():
score = float(np.array_equal(targets, predictions))
group_scores.append(score)
return np.mean(group_scores)