applied-ai-018's picture
Add files using upload-large-folder tool
19a3898 verified
raw
history blame
5.92 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.fp_quantizer import Quantizer, FP_Quantize
from .config import QuantizationConfig
class QuantizedParameter(nn.Parameter):
"""
Quantized parameter class that implements weight quantization. Weights
are stored in quantized form on GPUs, and can be dequantized on-the-fly when
needed by the model. The weights are actually quantized during any `.to(device)`.
Arguments:
data (Tensor): parameter tensor.
requires_grad (bool, optional): if the parameter requires gradient. Defaults
to False and is not supported to be True. Argument provided only for interface
compatibility with torch.nn.Parameter.
quantization_config (QuantizationConfig, optional):
quantizer (Quantizer, optional): Defaults to FP_Quantize but can be any quantizer
that implements deepspeed.ops.fp_quantizer.Quantizer. This argument is also
required since the quantizer is stashed in the Parameter itself, some models
may clone the Parameter by passing an attribute __dict__. For an example, see
tests/unit/linear/test_quant_param.py::TestQuantParam::test_hf_clone
"""
def __new__(
cls,
data: Optional[torch.Tensor] = None,
requires_grad: bool = False, # quantized weights must be frozen
quantization_config: QuantizationConfig = None,
quantizer: Quantizer = None,
):
if requires_grad:
raise ValueError(f"requires_grad=True is not supported with QuantizedParameter")
if data is None:
data = torch.empty(0)
self = torch.Tensor._make_subclass(cls, data, requires_grad)
self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config
if quantizer is not None:
self.quantizer = quantizer
else:
# if FPQuantizerBuilder is not compatible in this env this init will fail
self.quantizer = FP_Quantize(group_size=self.quantization_config.group_size)
self._ensure_quantized(self)
return self
def _ensure_quantized(self, tensor: torch.Tensor):
# If the tensor is on the accelerator and is not quantized, then quantize it in-place.
if get_accelerator().on_accelerator(tensor) and tensor.dtype != torch.int8:
with get_accelerator().stream(get_accelerator().current_stream(tensor.device)):
tensor.data = self.quantizer.quantize(tensor.data,
q_bits=self.quantization_config.q_bits,
q_mantisa_bits=self.quantization_config.mantissa_bits)
assert tensor.dtype == torch.int8
def dequantized(self) -> torch.Tensor:
"""
Return a tensor containing the dequantized weights of this parameter.
"""
if get_accelerator().on_accelerator(self.data) and self.data.dtype == torch.int8:
with get_accelerator().stream(get_accelerator().current_stream(self.data.device)):
return self.quantizer.dequantize(self.data,
q_bits=self.quantization_config.q_bits,
q_mantisa_bits=self.quantization_config.mantissa_bits)
return self.data
def __getstate__(self):
state = self.__dict__
state["data"] = self.data
state["quantization_config"] = self.quantization_config
state["requires_grad"] = self.requires_grad
return state
def __setstate__(self, state):
self.quantizer = state["quantizer"]
self.quantization_config = state["quantization_config"]
self.data = state["data"]
self.requires_grad = state["requires_grad"]
def __deepcopy__(self, memo):
new_instance = type(self).__new__(type(self))
state = self.__getstate__()
new_instance.__setstate__(state)
new_instance.quantizer = copy.deepcopy(state["quantizer"])
new_instance.quantization_config = copy.deepcopy(state["quantization_config"])
new_instance.data = copy.deepcopy(state["data"])
return new_instance
def __copy__(self):
new_instance = type(self).__new__(type(self))
state = self.__getstate__()
new_instance.__setstate__(state)
return new_instance
def cuda(self, device=None, non_blocking=False):
return self.to(device="cuda" if device is None else device, non_blocking=non_blocking)
def to(self, *args, **kwargs):
"""
Move the parameter to the given device. Then, if the device is a cuda device,
quantize it.
"""
tensor = super().to(*args, **kwargs)
self._ensure_quantized(tensor)
return tensor
class QuantizedLinear(nn.Linear):
"""
Linear layer that implements weight quantization. Parameters
are stored via `QuantizedParameter` and are dequantized on-the-fly during any
forward pass.
"""
def __init__(self,
input_dim: int,
output_dim: int,
bias: bool = False,
quantization_config: QuantizationConfig = None,
dtype=torch.bfloat16):
super().__init__(input_dim, output_dim, bias=bias, dtype=dtype)
assert dtype == torch.bfloat16, "currently only supports bfloat16 dtype"
self.weight = QuantizedParameter(self.weight.data, quantization_config=quantization_config)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight.dequantized(), self.bias)