peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/policy.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from abc import ABC, abstractmethod | |
from deepspeed.utils.types import ActivationFuncType, NormType | |
import torch | |
from deepspeed.accelerator import get_accelerator | |
transformer_param_names = ( | |
'attn_qkvw', \ | |
'attn_qkvb', \ | |
'attn_ow' , \ | |
'attn_ob', \ | |
'inter_w', \ | |
'inter_b', \ | |
'output_w', \ | |
'output_b', \ | |
'attn_nw', \ | |
'attn_nb', \ | |
'norm_w', \ | |
'norm_b') | |
class DSPolicy(ABC): | |
_orig_layer_class = None | |
def __init__(self): | |
self.cuda_graph_supported = False | |
def attention(self): | |
""" | |
Returns attention qkv and dense parameters | |
weight: (3*hidden, hidden) and (hidden, hidden) | |
bias: (3*hidden) and (hidden) | |
""" | |
raise NotImplementedError | |
class TransformerPolicy(DSPolicy): | |
# a static class variable containing the HuggingFace model configuration. | |
# see e.g., transformers.models.opt.configuration_opt.OPTConfig | |
hf_model_config = None | |
def __init__( | |
self, | |
inference=True, | |
linear_layer=True, | |
scale_attention=True, | |
megatron_v2=False, | |
use_mup=False, | |
# the type of activation function used in MLP | |
mlp_act_func_type=ActivationFuncType.GELU, | |
# applies layer norm before attention if `pre_attn_norm` is set to True | |
pre_attn_norm=True, | |
# this flag shows whether or not using prefix in loading the checkpoint | |
use_load_prefix=False, | |
# whether or not the qkv is stored in the split-format | |
split_qkv=True, | |
# Type of normalization to perform | |
norm_type=NormType.LayerNorm): | |
super().__init__() | |
self.cuda_graph_supported = False | |
self.inference = inference | |
self.linear_layer = linear_layer | |
self.scale_attention = scale_attention | |
self.is_megatron_v2 = megatron_v2 | |
self.use_mup = use_mup | |
self.mlp_act_func_type = mlp_act_func_type | |
self.pre_attn_norm = pre_attn_norm | |
self.use_load_prefix = use_load_prefix | |
self.split_qkv = split_qkv | |
self.norm_type = norm_type | |
def attention(self): | |
""" | |
Returns attention qkv and dense parameters | |
weight: (3*hidden, hidden) and (hidden, hidden) | |
bias: (3*hidden) and (hidden) | |
""" | |
raise NotImplementedError | |
def get_hidden_heads(self): | |
""" | |
return hidden_size and number of heads | |
""" | |
raise NotImplementedError | |
def mlp(self): | |
""" | |
Returns mlp intermediate and output | |
weight: (intermediate, hidden) and (hidden, intermediate) | |
bias: (intermediate) and (hidden) | |
""" | |
raise NotImplementedError | |
def layernorm(self): | |
""" | |
Returns LayerNorms used in transformer layer | |
Post-Attention and pre/post layer norm | |
gamma and beta with shape: (hidden) | |
""" | |
raise NotImplementedError | |
# TODO (lekurile): This function exists in base container as well, consolidate as some point | |
def transpose(data): | |
with torch.no_grad(): | |
data = data.contiguous() | |
data1 = data.transpose(-1, -2).reshape(-1) | |
data.reshape(-1).copy_(data1) | |
data1 = None | |
return data.reshape(data.shape[-1], data.shape[-2]) | |
# TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point | |
def _transpose(x, heads=1, mp_replace=None): | |
heads = heads // mp_replace.mp_size # type: ignore | |
outer_dim = -1 | |
attention_head_size = x.shape[outer_dim] // heads | |
new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size) | |
x_1 = x.view(*new_x_shape) | |
(q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1) | |
if len(q.shape) > 2: | |
new_shape = (q.shape[0], ) + (-1, ) | |
return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)), | |
dim=outer_dim).reshape(x.shape) | |
else: | |
return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape) | |
# This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor. | |
# Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist! | |
def maybe_copy(module, | |
sd, | |
weight_quantizer, | |
mp_replace, | |
dst_name, | |
src_name, | |
qkv=False, | |
megatron_v2=False, | |
split_qkv=False, | |
heads=1): | |
if src_name in sd: | |
dst = getattr(module, dst_name) | |
tmp = sd[src_name] | |
if len(dst.shape) == 1: | |
if split_qkv: | |
dst = mp_replace.strided_copy(dst, tmp, num_splits=3) | |
else: | |
dst = mp_replace.copy(dst, tmp) | |
if qkv and megatron_v2: | |
dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous()) | |
else: | |
if split_qkv: | |
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ | |
(transpose(tmp).contiguous())), num_splits=3, int8=weight_quantizer.q_int8) | |
else: | |
if qkv and megatron_v2: | |
tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous() | |
if weight_quantizer.q_int8: | |
tmp = transpose(tmp) | |
dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \ | |
transpose(tmp)), int8=weight_quantizer.q_int8) | |
setattr(module, dst_name, dst) | |
# Extending the maybe_copy function for when the q, k, and v are in separate parameters! | |
def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False): | |
if src_names[0] in sd: | |
q = sd[src_names[0]] | |
k = sd[src_names[1]] | |
v = sd[src_names[2]] | |
qkv_data = torch.cat((q, k, v), dim=0) | |
dst = getattr(module, dst_name) | |
if len(dst.shape) == 1: | |
if split_qkv: | |
dst = mp_replace.strided_copy(dst, qkv_data.contiguous(), num_splits=3) | |
else: | |
dst = mp_replace.copy(dst, qkv_data) | |
else: | |
if split_qkv: | |
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
((transpose(qkv_data)).contiguous())), num_splits=3, int8=weight_quantizer.q_int8) | |
else: | |
dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
transpose(qkv_data)), int8=weight_quantizer.q_int8) | |
setattr(module, dst_name, dst) | |
# Extending the `maybe_copy` function for when mlp1 is in separate parameters for GeGLU | |
def maybe_copy_geglu(module, sd, weight_quantizer, mp_replace, dst_name, src_names): | |
if src_names[0] in sd: | |
reg_proj = sd[src_names[0]] | |
gate_proj = sd[src_names[1]] | |
mlp1_data = torch.cat((reg_proj, gate_proj), dim=0) | |
dst = getattr(module, dst_name) | |
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(mlp1_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \ | |
transpose(mlp1_data)), num_splits=2, int8=weight_quantizer.q_int8) | |
setattr(module, dst_name, dst) | |
def pack_lora_weights(p): | |
return [ | |
p.lora_right_weight, \ | |
p.lora_left_weight, \ | |
p.lora_scaling | |
] | |
def maybe_get_lora(p): | |
if hasattr(p, 'lora_right_weight'): | |
lora_param = pack_lora_weights(p) | |
else: | |
lora_param = [] | |
return lora_param | |