peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/replace_module.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import torch | |
import tqdm | |
import deepspeed | |
import deepspeed.ops.transformer as transformer_inference | |
from deepspeed.ops.transformer.inference.diffusers_attention import DeepSpeedDiffusersAttention | |
from deepspeed.ops.transformer.inference.diffusers_transformer_block import DeepSpeedDiffusersTransformerBlock | |
from deepspeed.ops.transformer.inference.diffusers_2d_transformer import Diffusers2DTransformerConfig | |
from deepspeed.accelerator import get_accelerator | |
from .replace_policy import replace_policies, generic_policies | |
from .auto_tp import AutoTP, ReplaceWithTensorSlicing, Loading | |
from deepspeed import comm as dist | |
from deepspeed.module_inject.tp_shard import set_num_kv_heads, set_n_embd | |
from .load_checkpoint import load_model_with_checkpoint | |
import time | |
from .utils import policy_to_ds_container | |
import gc | |
def get_transformer_name(replaced_module): | |
from .containers import supported_models | |
from torch.nn import ModuleList | |
transformer_name = '' | |
for n, c in replaced_module.named_children(): | |
if c.__class__ in supported_models: | |
transformer_name += n + '.' | |
for name, child in c.named_children(): | |
if child.__class__ is ModuleList: | |
transformer_name += name | |
break | |
break | |
return transformer_name | |
class GroupQuantizer: | |
def __init__(self, q_int8=True, group_size=1, num_bits=8, num_groups=0): | |
self.group_size = group_size | |
self.num_bits = num_bits | |
self.q_int8 = q_int8 | |
self.num_groups = num_groups | |
def quantize(self, inputs, qkv=True, count=1, parallel_dim=0): | |
if not self.q_int8 or not qkv: | |
inputs = torch.nn.Parameter(inputs, requires_grad=False) | |
inputs.scale = torch.empty(1) | |
return inputs | |
q_range = 2**self.num_bits | |
num_groups = self.num_groups if self.num_groups > 0 else inputs.shape[0] // self.group_size | |
inputs = inputs.to(get_accelerator().current_device_name()) | |
input_flat = inputs.reshape(num_groups, -1).contiguous() | |
input_min = torch.min(input_flat, dim=1, keepdim=True)[0].float() | |
input_max = torch.max(input_flat, dim=1, keepdim=True)[0].float() | |
scale = torch.max(input_min.abs(), input_max.abs()) * 2.0 / (q_range) | |
input_flat = (input_flat / scale).round().clamp(-q_range // 2, q_range // 2 - 1) | |
inputs_q = input_flat.reshape(inputs.shape).to(torch.int8).contiguous() | |
out = torch.nn.Parameter(inputs_q, requires_grad=False) | |
inputs_split = inputs.split(inputs.shape[parallel_dim] // 2, dim=parallel_dim) | |
input_flat = [inputs_split[i].reshape(num_groups, -1).contiguous() for i in range(2)] | |
input_min = [torch.min(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)] | |
input_max = [torch.max(input_flat[i], dim=1, keepdim=True)[0].float() for i in range(2)] | |
scale1 = [(torch.max(input_min[i].abs(), input_max[i].abs()) * 2.0 / (q_range)).squeeze().unsqueeze(0) | |
for i in range(2)] | |
out.scale = torch.cat([scale.squeeze().unsqueeze(0), scale1[0], scale1[1]], dim=0).reshape(num_groups, | |
-1).contiguous() | |
return out | |
def _module_match(module): | |
for policy in generic_policies: | |
policy = policy() | |
if policy.match(module): | |
return policy | |
return None | |
def generic_injection(module, dtype=None, enable_cuda_graph=True): | |
def replace_attn(child, policy): | |
policy_attn = policy.attention(child) | |
if policy_attn is None: | |
return child | |
if len(policy_attn) == 5: | |
qkvw, attn_ow, attn_ob, hidden_size, heads = policy_attn | |
else: | |
qw, kw, vw, attn_ow, attn_ob, hidden_size, heads = policy_attn | |
config = transformer_inference.DeepSpeedInferenceConfig( | |
hidden_size=hidden_size, | |
heads=heads, | |
dtype=dtype, | |
triangular_masking=False, | |
max_out_tokens=4096, | |
) | |
attn_module = DeepSpeedDiffusersAttention(config) | |
def transpose(data): | |
data = data.contiguous() | |
data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1)) | |
data = data.reshape(data.shape[-1], data.shape[-2]) | |
data.to(get_accelerator().current_device_name()) | |
return data | |
if len(policy_attn) == 5: | |
attn_module.attn_qkvw.data = transpose(qkvw.data) | |
else: | |
attn_module.attn_qkvw = None | |
attn_module.attn_qw.data = transpose(qw.data) | |
attn_module.attn_kw.data = transpose(kw.data) | |
attn_module.attn_vw.data = transpose(vw.data) | |
attn_module.attn_qkvb = None | |
attn_module.attn_ow.data = transpose(attn_ow.data) | |
attn_module.attn_ob.data.copy_(attn_ob.data.to(get_accelerator().current_device_name())) | |
return attn_module | |
def replace_attn_block(child, policy): | |
config = Diffusers2DTransformerConfig() | |
return DeepSpeedDiffusersTransformerBlock(child, config) | |
if isinstance(module, torch.nn.Module): | |
pass | |
else: | |
if dtype not in [torch.float16, torch.half]: | |
raise ValueError("Generic injection only supported with FP16") | |
try: | |
import diffusers | |
if hasattr(diffusers.models.attention, 'CrossAttention'): | |
cross_attention = diffusers.models.attention.CrossAttention | |
else: | |
cross_attention = diffusers.models.attention_processor.Attention | |
attention_block = diffusers.models.attention.BasicTransformerBlock | |
new_policies = { | |
cross_attention: replace_attn, | |
attention_block: replace_attn_block, | |
} | |
except ImportError: | |
new_policies = {} | |
#replace_transformer_layer(None, | |
# module.text_encoder, | |
# training=False, | |
# replace_with_kernel_inject=True, | |
# triangular_masking=True, | |
# max_out_tokens=8192) | |
from ..model_implementations.transformers.clip_encoder import DSClipEncoder | |
cg_encoder = DSClipEncoder(module.text_encoder, enable_cuda_graph=enable_cuda_graph) | |
setattr(module, 'text_encoder', cg_encoder) | |
for name in module.__dict__.keys(): | |
sub_module = getattr(module, name) | |
policy = _module_match(sub_module) | |
if policy is not None: | |
def _replace_module(module, policy): | |
for name, child in module.named_children(): | |
_replace_module(child, policy) | |
if child.__class__ in new_policies: | |
replaced_module = new_policies[child.__class__](child, policy) | |
setattr(module, name, replaced_module) | |
_replace_module(sub_module, policy) | |
new_module = policy.apply(sub_module, enable_cuda_graph=enable_cuda_graph) | |
print(f"**** found and replaced {name} w. {type(new_module)}") | |
setattr(module, name, new_module) | |
container_g = None | |
def replace_transformer_layer(orig_layer_impl, model, checkpoint_dict, config, model_config): | |
""" Replace bert-style transformer layers with DeepSpeed's transformer layer | |
Arguments: | |
orig_layer_impl (torch.nn.Module): the original transformer layer implementation to look for, | |
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer | |
model (torch.nn.Module): user's nn.module representing their model | |
checkpoint_dict: Dictionary for checkpoint passed from the Inference Engine | |
config: top-level DS Inference config defined in inference/config.py | |
model_config: HuggingFace model config passed from the inference/engine.py | |
Returns: | |
Updated nn.module with replaced transformer layers | |
""" | |
# defining globals as internally defined functions inherit these everywhere | |
quantize = (config.dtype == torch.int8) | |
# todo: Refactor later. In future, let's minimize the style used above and use config.** instead | |
linear_layer_setting = None | |
''' | |
linear_layer_setting (tuple of modules) [Optional]: shows which two classes are used for linear layers and embedding layers | |
''' | |
micro_batch_size = -1 | |
seed = -1 | |
local_rank = -1 | |
mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group, | |
mp_size=config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1) | |
def replace_with_policy(child, policy_cls, triangular_masking, inference=False, layer_id=0): | |
policy = policy_cls(child, inference=inference) | |
if not policy.cuda_graph_supported: | |
# policy says cuda graph is not supported raise an error if set | |
assert not config.enable_cuda_graph, "cuda graph is not supported with this model, please disable" | |
from deepspeed.moe.layer import MoE | |
moe = False | |
if hasattr(child, 'mlp') and isinstance(child.mlp, MoE): | |
num_experts = child.mlp.num_experts | |
moe = True | |
# 1. Create a model-specific container object using the policy object. | |
_container = policy_to_ds_container(policy=policy, | |
config=config, | |
model_config=model_config, | |
layer_id=layer_id, | |
child=child) | |
_container.set_moe(moe) | |
# 2. Set the tensor parallelism config | |
_container.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group) | |
# 3. Initialize tensors | |
_container.initialize_tensors() | |
# 4. deal with data types -- needs refactor to use dtype instead of fp16 | |
if config.dtype in [torch.float16, torch.bfloat16, torch.int8]: | |
_container.convert_to_required_dtype() | |
# 5. Set the quantization config | |
quantizer = GroupQuantizer(q_int8=quantize) | |
_container.set_quantization_config(quantizer) | |
# 6. create a DS Inference config object | |
_container.create_ds_model_config() | |
# 7. use the config and create the module | |
_container.create_module() | |
# 8. transpose the weights and bias if needed | |
_container.transpose() | |
# 9. deal with tensor parallelism. | |
_container.apply_tensor_parallelism(mp_replace) | |
# 10. copy the tensors from the model-specific container to the new module | |
_container.copy_data_to_new_module() | |
# 11. set global for generic checkpoint loading | |
global container_g | |
if container_g is None: | |
container_g = _container | |
return _container.module | |
def replace_wo_policy(module, all_reduce_linears, prefix="", state_dict=None): | |
#mp_replace = ReplaceWithTensorSlicing(mp_group=config.tensor_parallel.tp_group) | |
# 1. Create AutoTP object | |
_autotp = AutoTP(module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl) | |
# 2. Set the tensor parallelism config | |
_autotp.set_tensor_parallel_config(config.tensor_parallel.tp_size, config.tensor_parallel.tp_group) | |
# 3. Try to get num_key_heads from model_config.num_key_value_heads | |
num_kv_heads = _autotp.get_model_num_kv_heads(model_config) | |
# 4. When we have num_kv_heads defined, uneven division is possible, otherwise enforce even division | |
set_num_kv_heads(num_kv_heads) | |
# 4.1 Get n_embd | |
n_embd = None | |
multi_query_n_embd_names = ['n_embd'] | |
for name in multi_query_n_embd_names: | |
if hasattr(model_config, name): | |
n_embd = getattr(model_config, name) | |
if n_embd != None: | |
break | |
# 4.2 set n_embd | |
set_n_embd(n_embd) | |
# 5. Set linear policies | |
_autotp.update_linear_policies() | |
# 6. Replace modules | |
if "lm_head" in all_reduce_linears or "embed_out" in all_reduce_linears: | |
return _autotp._replace_last_linear_module(module) | |
return _autotp._replace_module(module) | |
def replace_fn(child, _policy, layer_id=0, prefix="", state_dict=None): | |
training = False # todo: refactor this part to go in the config | |
if training: | |
# copy relevant state from child -> new module | |
new_module = replace_with_policy(child, _policy, config.triangular_masking) | |
else: | |
# copy relevant state from child -> new module | |
if config.replace_with_kernel_inject: | |
new_module = replace_with_policy(child, | |
_policy, | |
config.triangular_masking, | |
inference=True, | |
layer_id=layer_id) | |
else: | |
new_module = replace_wo_policy(child, _policy, prefix=prefix, state_dict=state_dict) | |
return new_module | |
def set_lm_head(module): | |
embedding_weight = None | |
for n, p in module.named_parameters(): | |
if "word_embeddings." in n or "embed_tokens." in n or "wte." in n: | |
embedding_weight = p | |
if embedding_weight is not None and hasattr(module, "lm_head") and hasattr( | |
module.lm_head, "weight") and module.lm_head.weight.is_meta: | |
module.lm_head.weight = embedding_weight | |
# enable tensor parallel for the last linear | |
if hasattr(module, "lm_head") and hasattr(module.lm_head, | |
"weight") and not module.lm_head.weight.is_meta and isinstance( | |
module.lm_head, torch.nn.Linear): | |
module = replace_wo_policy(module, ("lm_head", ), 0, "lm_head") | |
elif hasattr(module, "embed_out") and hasattr(module.embed_out, | |
"weight") and not module.embed_out.weight.is_meta and isinstance( | |
module.embed_out, torch.nn.Linear): | |
module = replace_wo_policy(module, ("embed_out", ), 0, "embed_out") | |
return module | |
if checkpoint_dict is not None and not config.replace_with_kernel_inject: | |
# AutoTP shard loading | |
checkpoint = checkpoint_dict["checkpoints"] | |
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards") | |
for i in range(len(checkpoint)): | |
checkpoint_file = os.path.join(config.base_dir, checkpoint[i]) | |
replaced_module = replace_module(model=model, | |
orig_class=orig_layer_impl, | |
replace_fn=replace_fn, | |
_replace_policy=config.injection_policy_tuple, | |
checkpoint=checkpoint_file) | |
pbar.update(1) | |
gc.collect() | |
replaced_module = set_lm_head(replaced_module) | |
else: | |
replaced_module = replace_module(model=model, | |
orig_class=orig_layer_impl, | |
replace_fn=replace_fn, | |
_replace_policy=config.injection_policy_tuple) | |
quantizer = GroupQuantizer(q_int8=quantize) | |
world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
rank = dist.get_rank() if dist.is_initialized() else 0 | |
if checkpoint_dict is not None and config.replace_with_kernel_inject: | |
assert container_g.ckpt_load_enabled, \ | |
f"Meta Tensor checkpoint loading not supported in {container_g.__class__.__name__} container" | |
start_time = time.time() | |
checkpoint = checkpoint_dict['checkpoints'] | |
ckpt_list = checkpoint["tp"] if type(checkpoint) is dict else checkpoint | |
ckpt_type = checkpoint_dict.get('parallelization', 'pp') | |
ckpt_mp_size = checkpoint_dict.get('tp_size', len(ckpt_list)) | |
ckpt_mp_size = checkpoint_dict.get('mp_size', ckpt_mp_size) | |
base_dir1 = checkpoint_dict.get('base_dir', config.base_dir) | |
if ckpt_type == 'pp' and type(checkpoint) is list: | |
pbar = tqdm.tqdm(total=len(checkpoint), desc=f"Loading {len(checkpoint)} checkpoint shards") | |
for i in range(len(checkpoint)): | |
sd = [torch.load(os.path.join(base_dir1, checkpoint[i]), map_location='cpu')] | |
load_model_with_checkpoint(replaced_module, | |
sd, | |
mp_replace, | |
ckpt_type, | |
ckpt_mp_size, | |
quantizer, | |
container=container_g) | |
pbar.update(1) | |
else: | |
num_checkpoints = len(ckpt_list) // ckpt_mp_size | |
tp_split_size = (world_size / ckpt_mp_size) | |
sd_offset = int(rank / tp_split_size) | |
sd_count = int((rank + max(1, tp_split_size)) / tp_split_size) - sd_offset | |
pbar = tqdm.tqdm(total=num_checkpoints, desc=f"Loading {num_checkpoints} checkpoint shards") | |
for i in range(num_checkpoints): | |
pbar.update(1) | |
ckpt_index = i * ckpt_mp_size + sd_offset | |
ckpt_files = [ | |
os.path.join(base_dir1, ckpt_list[ckpt_index + j]) if base_dir1 else ckpt_list[ckpt_index + j] | |
for j in range(sd_count) | |
] | |
sds = [torch.load(ckpt_file, map_location='cpu') for ckpt_file in ckpt_files] | |
load_model_with_checkpoint(replaced_module, | |
sds, | |
mp_replace, | |
ckpt_type, | |
ckpt_mp_size, | |
quantizer, | |
int(rank % tp_split_size), | |
container=container_g) | |
sds = [None for _ in sds] | |
gc.collect() | |
if "non_tp" in checkpoint: | |
pbar = tqdm.tqdm(total=len(checkpoint["non_tp"]), | |
desc=f"Loading {len(checkpoint['non_tp'])} checkpoint shards") | |
for i in range(len(checkpoint["non_tp"])): | |
pbar.update(1) | |
ckpt_file = os.path.join(base_dir1, | |
checkpoint["non_tp"][i]) if base_dir1 else checkpoint["non_tp"][i] | |
sds = [torch.load(ckpt_file, map_location='cpu')] | |
load_model_with_checkpoint(replaced_module, | |
sds, | |
mp_replace, | |
ckpt_type, | |
ckpt_mp_size, | |
quantizer, | |
int(rank % tp_split_size), | |
container=container_g) | |
sds = [None for _ in sds] | |
gc.collect() | |
set_lm_head(replaced_module) | |
print(f"checkpoint loading time at rank {rank}: {time.time()-start_time} sec") | |
if config.save_mp_checkpoint_path is not None: | |
from collections import OrderedDict | |
import json | |
num_partitions = 8 | |
if checkpoint_dict is None: | |
ckpt_name = "ds_model" | |
try: | |
from transformers.models.bloom.modeling_bloom import BloomForCausalLM | |
if isinstance(model, BloomForCausalLM): | |
ckpt_name = "bloom" | |
except ImportError: | |
ckpt_name = "ds_model" | |
else: | |
ckpt_name = checkpoint_dict['type'] | |
if dist.is_initialized(): | |
dist.barrier() | |
transformer_name = get_transformer_name(replaced_module) | |
non_tp_ckpt_name = f'non-tp.pt' | |
ckpt_files = [non_tp_ckpt_name] | |
os.makedirs(config.save_mp_checkpoint_path, exist_ok=True) | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
print("Saving tp-sharded checkpoints") | |
torch.save( | |
OrderedDict({k: v | |
for k, v in dict(replaced_module.state_dict()).items() | |
if transformer_name not in k}), f'{config.save_mp_checkpoint_path}/{non_tp_ckpt_name}') | |
dtype_reprs = { | |
torch.float32: 'float32', | |
torch.float16: 'float16', | |
torch.int8: 'int8', | |
torch.bfloat16: 'bfloat16' | |
} | |
ckpt_config = json.dumps({ | |
'type': ckpt_name, | |
'base_dir': f'{config.save_mp_checkpoint_path}', | |
'checkpoints': { | |
"non_tp": ckpt_files, | |
"tp": [f'tp_{r:0>2d}_{m:0>2d}.pt' for m in range(num_partitions) for r in range(world_size)] | |
}, | |
'version': 1.0, | |
'parallelization': 'tp', | |
'tp_size': world_size, | |
'dtype': dtype_reprs[config.dtype] | |
}) | |
with open(f"{config.save_mp_checkpoint_path}/ds_inference_config.json", "w") as cfg: | |
cfg.write(ckpt_config) | |
rep_sd = replaced_module.state_dict() | |
for n, p in replaced_module.named_parameters(): | |
if hasattr(p, 'scale'): | |
rep_sd[n] = [p, p.scale] | |
keys = list(rep_sd.keys()) | |
partition_size = (len(keys) // num_partitions + 1) | |
for m in range(num_partitions): | |
torch.save( | |
OrderedDict({ | |
k: [rep_sd[k], rep_sd[k].scale] if hasattr(rep_sd[k], 'scale') else rep_sd[k] | |
for k in keys[m * partition_size:(m + 1) * partition_size] if transformer_name in k | |
}), f'{config.save_mp_checkpoint_path}/tp_{rank:0>2d}_{m:0>2d}.pt') | |
return replaced_module | |
def revert_transformer_layer(orig_layer_impl, model, config, preln=False): | |
""" Revert DeepSpeed's transformer layer back to original bert-style transformer layer | |
Arguments: | |
orig_layer_impl (torch.nn.Module): the original transformer layer implementation that was replaced, | |
e.g., transformers.models.bert.modeling_bert.BertLayer or transformers.BertLayer | |
model (torch.nn.Module): user's nn.module representing their model | |
config (dict): model config containing hidden size, attention heads, etc. | |
Returns: | |
Updated nn.module with original bert-style transformer layers | |
""" | |
def replace_fn(child, _replace_policy, layer_id): | |
#from turing.nvidia_modelingpreln import BertLayer | |
orig_module = orig_layer_impl(config) | |
# copy relevant state from child -> original module | |
qkvw = child.attn_qkvw.data | |
qkvb = child.attn_qkvb.data | |
qw, kw, vw = torch.chunk(qkvw, 3, axis=0) | |
qb, kb, vb = torch.chunk(qkvb, 3, axis=0) | |
orig_module.attention.self.query.weight.data = qw | |
orig_module.attention.self.query.bias.data = qb | |
orig_module.attention.self.key.weight.data = kw | |
orig_module.attention.self.key.bias.data = kb | |
orig_module.attention.self.value.weight.data = vw | |
orig_module.attention.self.value.bias.data = vb | |
orig_module.attention.output.dense.weight.data = child.attn_ow.data | |
orig_module.attention.output.dense.bias.data = child.attn_ob.data | |
attn_ln_w = child.attn_nw.data | |
attn_ln_b = child.attn_nb.data | |
if preln: | |
orig_module.PostAttentionLayerNorm.weight.data = attn_ln_w | |
orig_module.PostAttentionLayerNorm.bias.data = attn_ln_b | |
else: | |
orig_module.attention.output.LayerNorm.weight.data = attn_ln_w | |
orig_module.attention.output.LayerNorm.bias.data = attn_ln_b | |
inter_ff_w = child.inter_w.data | |
inter_ff_b = child.inter_b.data | |
if preln: | |
orig_module.intermediate.dense_act.weight.data = inter_ff_w | |
orig_module.intermediate.dense_act.bias.data = inter_ff_b | |
else: | |
orig_module.intermediate.dense.weight.data = inter_ff_w | |
orig_module.intermediate.dense.bias.data = inter_ff_b | |
orig_module.output.dense.weight.data = child.output_w.data | |
orig_module.output.dense.bias.data = child.output_b.data | |
transformer_ln_w = child.norm_w.data | |
transformer_ln_b = child.norm_b.data | |
if preln: | |
orig_module.PreAttentionLayerNorm.weight.data = transformer_ln_w | |
orig_module.PreAttentionLayerNorm.bias.data = transformer_ln_b | |
else: | |
orig_module.output.LayerNorm.weight.data = transformer_ln_w | |
orig_module.output.LayerNorm.bias.data = transformer_ln_b | |
return orig_module | |
return replace_module(model=model, | |
orig_class=deepspeed.DeepSpeedTransformerLayer, | |
replace_fn=replace_fn, | |
_replace_policy=None) | |
def replace_module(model, orig_class, replace_fn, _replace_policy, checkpoint=None): | |
""" Scan the model for instances of ``orig_clas:`` to replace using ``replace_fn``. | |
Arguments: | |
model (torch.nn.Module): the model to augment | |
orig_class (torch.nn.Module): the module to search for | |
replace_fn (method): a method to convert instances of ``orig_class`` to the | |
desired type and return a new instance. | |
Returns: | |
A modified ``model``. | |
""" | |
sd = None | |
if checkpoint is not None: | |
if checkpoint.endswith(".safetensors"): | |
from safetensors.torch import load_file | |
sd = load_file(checkpoint) | |
else: | |
sd = torch.load(checkpoint, map_location='cpu') | |
policy = {} | |
if orig_class is not None: | |
policy.update({orig_class: (replace_fn, _replace_policy)}) | |
else: | |
for plcy in replace_policies: | |
# instantiate a throw-away policy in order to populate the _orig_layer_class | |
_ = plcy(None) | |
if isinstance(plcy._orig_layer_class, list): | |
for orig_layer_class in plcy._orig_layer_class: | |
policy.update({orig_layer_class: (replace_fn, plcy)}) | |
elif plcy._orig_layer_class is not None: | |
policy.update({plcy._orig_layer_class: (replace_fn, plcy)}) | |
assert len(policy.items()) > 0,\ | |
"No default policy found! Please specify your policy injection_policy (like {BertLayer:HFBEertLayerPolicy})." +\ | |
"You can find some samples here: https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/module_inject/replace_policy.py" | |
replaced_module, _ = _replace_module(model, policy, state_dict=sd) | |
return replaced_module | |
from ..pipe import PipelineModule | |
import re | |
def skip_level_0_prefix(model, state_dict): | |
model = str(model) | |
key = re.search(r": (.*?)Model", model) | |
if key is None: | |
key = re.search(r": (.*?)Stack", model) | |
if key is None: | |
key = re.match(r"(.*?)Model", model) | |
# if keys start with 'model.', don't skip level 0 prefix | |
if state_dict is not None: | |
for item in state_dict.keys(): | |
if re.match("^model[.]", item): | |
return False | |
if key is not None and key.group(1).lower() in ["bloom", "opt"]: | |
return True | |
return False | |
def _replace_module(model, policies, prefix='', layer_id=0, level_id=0, state_dict=None): | |
""" Traverse model's children recursively and apply any transformations in ``policies``. | |
Arguments: | |
model (torch.nn.Module): model to augment | |
policies (dict): Mapping of source class to replacement function. | |
Returns: | |
Modified ``model``. | |
""" | |
for name, child in model.named_children(): | |
if child.__class__ in policies: | |
replaced_module = policies[child.__class__][0](child, | |
policies[child.__class__][-1], | |
layer_id, | |
prefix=prefix + name, | |
state_dict=state_dict) | |
setattr(model, name, replaced_module) | |
if isinstance(model, PipelineModule): | |
assert hasattr(model, 'forward_funcs'),\ | |
"we require pipe-module to have the list of fwd_functions" | |
model.forward_funcs[model.fwd_map[name]] = replaced_module | |
layer_id += 1 | |
else: | |
checking_key = prefix + name + '.' | |
if Loading.is_load_module(child) and state_dict is not None: | |
if any(checking_key in item for item in state_dict): | |
Loading.load( | |
child, | |
state_dict, | |
checking_key, | |
) | |
else: | |
continue | |
if len(child._buffers) != 0 and state_dict is not None: | |
Loading.load_buffer(child, state_dict, checking_key) | |
_, layer_id = _replace_module(child, | |
policies, | |
prefix if level_id == 0 and skip_level_0_prefix(model, state_dict) else \ | |
prefix + name + '.', | |
layer_id=layer_id, | |
level_id=level_id + 1, | |
state_dict=state_dict) | |
# Add the reset_cache func to the model, so that it can be called in the beginning of text-generation. | |
model.reset_cache = transformer_inference.DeepSpeedTransformerInference.reset_cache | |
return model, layer_id | |