peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/_lsq
/bvls.py
"""Bounded-variable least-squares algorithm.""" | |
import numpy as np | |
from numpy.linalg import norm, lstsq | |
from scipy.optimize import OptimizeResult | |
from .common import print_header_linear, print_iteration_linear | |
def compute_kkt_optimality(g, on_bound): | |
"""Compute the maximum violation of KKT conditions.""" | |
g_kkt = g * on_bound | |
free_set = on_bound == 0 | |
g_kkt[free_set] = np.abs(g[free_set]) | |
return np.max(g_kkt) | |
def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose, rcond=None): | |
m, n = A.shape | |
x = x_lsq.copy() | |
on_bound = np.zeros(n) | |
mask = x <= lb | |
x[mask] = lb[mask] | |
on_bound[mask] = -1 | |
mask = x >= ub | |
x[mask] = ub[mask] | |
on_bound[mask] = 1 | |
free_set = on_bound == 0 | |
active_set = ~free_set | |
free_set, = np.nonzero(free_set) | |
r = A.dot(x) - b | |
cost = 0.5 * np.dot(r, r) | |
initial_cost = cost | |
g = A.T.dot(r) | |
cost_change = None | |
step_norm = None | |
iteration = 0 | |
if verbose == 2: | |
print_header_linear() | |
# This is the initialization loop. The requirement is that the | |
# least-squares solution on free variables is feasible before BVLS starts. | |
# One possible initialization is to set all variables to lower or upper | |
# bounds, but many iterations may be required from this state later on. | |
# The implemented ad-hoc procedure which intuitively should give a better | |
# initial state: find the least-squares solution on current free variables, | |
# if its feasible then stop, otherwise, set violating variables to | |
# corresponding bounds and continue on the reduced set of free variables. | |
while free_set.size > 0: | |
if verbose == 2: | |
optimality = compute_kkt_optimality(g, on_bound) | |
print_iteration_linear(iteration, cost, cost_change, step_norm, | |
optimality) | |
iteration += 1 | |
x_free_old = x[free_set].copy() | |
A_free = A[:, free_set] | |
b_free = b - A.dot(x * active_set) | |
z = lstsq(A_free, b_free, rcond=rcond)[0] | |
lbv = z < lb[free_set] | |
ubv = z > ub[free_set] | |
v = lbv | ubv | |
if np.any(lbv): | |
ind = free_set[lbv] | |
x[ind] = lb[ind] | |
active_set[ind] = True | |
on_bound[ind] = -1 | |
if np.any(ubv): | |
ind = free_set[ubv] | |
x[ind] = ub[ind] | |
active_set[ind] = True | |
on_bound[ind] = 1 | |
ind = free_set[~v] | |
x[ind] = z[~v] | |
r = A.dot(x) - b | |
cost_new = 0.5 * np.dot(r, r) | |
cost_change = cost - cost_new | |
cost = cost_new | |
g = A.T.dot(r) | |
step_norm = norm(x[free_set] - x_free_old) | |
if np.any(v): | |
free_set = free_set[~v] | |
else: | |
break | |
if max_iter is None: | |
max_iter = n | |
max_iter += iteration | |
termination_status = None | |
# Main BVLS loop. | |
optimality = compute_kkt_optimality(g, on_bound) | |
for iteration in range(iteration, max_iter): # BVLS Loop A | |
if verbose == 2: | |
print_iteration_linear(iteration, cost, cost_change, | |
step_norm, optimality) | |
if optimality < tol: | |
termination_status = 1 | |
if termination_status is not None: | |
break | |
move_to_free = np.argmax(g * on_bound) | |
on_bound[move_to_free] = 0 | |
while True: # BVLS Loop B | |
free_set = on_bound == 0 | |
active_set = ~free_set | |
free_set, = np.nonzero(free_set) | |
x_free = x[free_set] | |
x_free_old = x_free.copy() | |
lb_free = lb[free_set] | |
ub_free = ub[free_set] | |
A_free = A[:, free_set] | |
b_free = b - A.dot(x * active_set) | |
z = lstsq(A_free, b_free, rcond=rcond)[0] | |
lbv, = np.nonzero(z < lb_free) | |
ubv, = np.nonzero(z > ub_free) | |
v = np.hstack((lbv, ubv)) | |
if v.size > 0: | |
alphas = np.hstack(( | |
lb_free[lbv] - x_free[lbv], | |
ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v]) | |
i = np.argmin(alphas) | |
i_free = v[i] | |
alpha = alphas[i] | |
x_free *= 1 - alpha | |
x_free += alpha * z | |
x[free_set] = x_free | |
if i < lbv.size: | |
on_bound[free_set[i_free]] = -1 | |
else: | |
on_bound[free_set[i_free]] = 1 | |
else: | |
x_free = z | |
x[free_set] = x_free | |
break | |
step_norm = norm(x_free - x_free_old) | |
r = A.dot(x) - b | |
cost_new = 0.5 * np.dot(r, r) | |
cost_change = cost - cost_new | |
if cost_change < tol * cost: | |
termination_status = 2 | |
cost = cost_new | |
g = A.T.dot(r) | |
optimality = compute_kkt_optimality(g, on_bound) | |
if termination_status is None: | |
termination_status = 0 | |
return OptimizeResult( | |
x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound, | |
nit=iteration + 1, status=termination_status, | |
initial_cost=initial_cost) | |