peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/optimize
/tests
/test_direct.py
""" | |
Unit test for DIRECT optimization algorithm. | |
""" | |
from numpy.testing import (assert_allclose, | |
assert_array_less) | |
import pytest | |
import numpy as np | |
from scipy.optimize import direct, Bounds | |
class TestDIRECT: | |
def setup_method(self): | |
self.fun_calls = 0 | |
self.bounds_sphere = 4*[(-2, 3)] | |
self.optimum_sphere_pos = np.zeros((4, )) | |
self.optimum_sphere = 0.0 | |
self.bounds_stylinski_tang = Bounds([-4., -4.], [4., 4.]) | |
self.maxiter = 1000 | |
# test functions | |
def sphere(self, x): | |
self.fun_calls += 1 | |
return np.square(x).sum() | |
def inv(self, x): | |
if np.sum(x) == 0: | |
raise ZeroDivisionError() | |
return 1/np.sum(x) | |
def nan_fun(self, x): | |
return np.nan | |
def inf_fun(self, x): | |
return np.inf | |
def styblinski_tang(self, pos): | |
x, y = pos | |
return 0.5 * (x**4 - 16 * x**2 + 5 * x + y**4 - 16 * y**2 + 5 * y) | |
def test_direct(self, locally_biased): | |
res = direct(self.sphere, self.bounds_sphere, | |
locally_biased=locally_biased) | |
# test accuracy | |
assert_allclose(res.x, self.optimum_sphere_pos, | |
rtol=1e-3, atol=1e-3) | |
assert_allclose(res.fun, self.optimum_sphere, atol=1e-5, rtol=1e-5) | |
# test that result lies within bounds | |
_bounds = np.asarray(self.bounds_sphere) | |
assert_array_less(_bounds[:, 0], res.x) | |
assert_array_less(res.x, _bounds[:, 1]) | |
# test number of function evaluations. Original DIRECT overshoots by | |
# up to 500 evaluations in last iteration | |
assert res.nfev <= 1000 * (len(self.bounds_sphere) + 1) | |
# test that number of function evaluations is correct | |
assert res.nfev == self.fun_calls | |
# test that number of iterations is below supplied maximum | |
assert res.nit <= self.maxiter | |
def test_direct_callback(self, locally_biased): | |
# test that callback does not change the result | |
res = direct(self.sphere, self.bounds_sphere, | |
locally_biased=locally_biased) | |
def callback(x): | |
x = 2*x | |
dummy = np.square(x) | |
print("DIRECT minimization algorithm callback test") | |
return dummy | |
res_callback = direct(self.sphere, self.bounds_sphere, | |
locally_biased=locally_biased, | |
callback=callback) | |
assert_allclose(res.x, res_callback.x) | |
assert res.nit == res_callback.nit | |
assert res.nfev == res_callback.nfev | |
assert res.status == res_callback.status | |
assert res.success == res_callback.success | |
assert res.fun == res_callback.fun | |
assert_allclose(res.x, res_callback.x) | |
assert res.message == res_callback.message | |
# test accuracy | |
assert_allclose(res_callback.x, self.optimum_sphere_pos, | |
rtol=1e-3, atol=1e-3) | |
assert_allclose(res_callback.fun, self.optimum_sphere, | |
atol=1e-5, rtol=1e-5) | |
def test_exception(self, locally_biased): | |
bounds = 4*[(-10, 10)] | |
with pytest.raises(ZeroDivisionError): | |
direct(self.inv, bounds=bounds, | |
locally_biased=locally_biased) | |
def test_nan(self, locally_biased): | |
bounds = 4*[(-10, 10)] | |
direct(self.nan_fun, bounds=bounds, | |
locally_biased=locally_biased) | |
def test_len_tol(self, len_tol, locally_biased): | |
bounds = 4*[(-10., 10.)] | |
res = direct(self.sphere, bounds=bounds, len_tol=len_tol, | |
vol_tol=1e-30, locally_biased=locally_biased) | |
assert res.status == 5 | |
assert res.success | |
assert_allclose(res.x, np.zeros((4, ))) | |
message = ("The side length measure of the hyperrectangle containing " | |
"the lowest function value found is below " | |
f"len_tol={len_tol}") | |
assert res.message == message | |
def test_vol_tol(self, vol_tol, locally_biased): | |
bounds = 4*[(-10., 10.)] | |
res = direct(self.sphere, bounds=bounds, vol_tol=vol_tol, | |
len_tol=0., locally_biased=locally_biased) | |
assert res.status == 4 | |
assert res.success | |
assert_allclose(res.x, np.zeros((4, ))) | |
message = ("The volume of the hyperrectangle containing the lowest " | |
f"function value found is below vol_tol={vol_tol}") | |
assert res.message == message | |
def test_f_min(self, f_min_rtol, locally_biased): | |
# test that desired function value is reached within | |
# relative tolerance of f_min_rtol | |
f_min = 1. | |
bounds = 4*[(-2., 10.)] | |
res = direct(self.sphere, bounds=bounds, f_min=f_min, | |
f_min_rtol=f_min_rtol, | |
locally_biased=locally_biased) | |
assert res.status == 3 | |
assert res.success | |
assert res.fun < f_min * (1. + f_min_rtol) | |
message = ("The best function value found is within a relative " | |
f"error={f_min_rtol} of the (known) global optimum f_min") | |
assert res.message == message | |
def circle_with_args(self, x, a, b): | |
return np.square(x[0] - a) + np.square(x[1] - b).sum() | |
def test_f_circle_with_args(self, locally_biased): | |
bounds = 2*[(-2.0, 2.0)] | |
res = direct(self.circle_with_args, bounds, args=(1, 1), maxfun=1250, | |
locally_biased=locally_biased) | |
assert_allclose(res.x, np.array([1., 1.]), rtol=1e-5) | |
def test_failure_maxfun(self, locally_biased): | |
# test that if optimization runs for the maximal number of | |
# evaluations, success = False is returned | |
maxfun = 100 | |
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxfun=maxfun, locally_biased=locally_biased) | |
assert result.success is False | |
assert result.status == 1 | |
assert result.nfev >= maxfun | |
message = ("Number of function evaluations done is " | |
f"larger than maxfun={maxfun}") | |
assert result.message == message | |
def test_failure_maxiter(self, locally_biased): | |
# test that if optimization runs for the maximal number of | |
# iterations, success = False is returned | |
maxiter = 10 | |
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxiter=maxiter, locally_biased=locally_biased) | |
assert result.success is False | |
assert result.status == 2 | |
assert result.nit >= maxiter | |
message = f"Number of iterations is larger than maxiter={maxiter}" | |
assert result.message == message | |
def test_bounds_variants(self, locally_biased): | |
# test that new and old bounds yield same result | |
lb = [-6., 1., -5.] | |
ub = [-1., 3., 5.] | |
x_opt = np.array([-1., 1., 0.]) | |
bounds_old = list(zip(lb, ub)) | |
bounds_new = Bounds(lb, ub) | |
res_old_bounds = direct(self.sphere, bounds_old, | |
locally_biased=locally_biased) | |
res_new_bounds = direct(self.sphere, bounds_new, | |
locally_biased=locally_biased) | |
assert res_new_bounds.nfev == res_old_bounds.nfev | |
assert res_new_bounds.message == res_old_bounds.message | |
assert res_new_bounds.success == res_old_bounds.success | |
assert res_new_bounds.nit == res_old_bounds.nit | |
assert_allclose(res_new_bounds.x, res_old_bounds.x) | |
assert_allclose(res_new_bounds.x, x_opt, rtol=1e-2) | |
def test_epsilon(self, eps, locally_biased): | |
result = direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
eps=eps, vol_tol=1e-6, | |
locally_biased=locally_biased) | |
assert result.status == 4 | |
assert result.success | |
def test_no_segmentation_fault(self, locally_biased): | |
# test that an excessive number of function evaluations | |
# does not result in segmentation fault | |
bounds = [(-5., 20.)] * 100 | |
result = direct(self.sphere, bounds, maxfun=10000000, | |
maxiter=1000000, locally_biased=locally_biased) | |
assert result is not None | |
def test_inf_fun(self, locally_biased): | |
# test that an objective value of infinity does not crash DIRECT | |
bounds = [(-5., 5.)] * 2 | |
result = direct(self.inf_fun, bounds, | |
locally_biased=locally_biased) | |
assert result is not None | |
def test_len_tol_validation(self, len_tol): | |
error_msg = "len_tol must be between 0 and 1." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
len_tol=len_tol) | |
def test_vol_tol_validation(self, vol_tol): | |
error_msg = "vol_tol must be between 0 and 1." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
vol_tol=vol_tol) | |
def test_fmin_rtol_validation(self, f_min_rtol): | |
error_msg = "f_min_rtol must be between 0 and 1." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
f_min_rtol=f_min_rtol, f_min=0.) | |
def test_maxfun_wrong_type(self, maxfun): | |
error_msg = "maxfun must be of type int." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxfun=maxfun) | |
def test_maxiter_wrong_type(self, maxiter): | |
error_msg = "maxiter must be of type int." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxiter=maxiter) | |
def test_negative_maxiter(self): | |
error_msg = "maxiter must be > 0." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxiter=-1) | |
def test_negative_maxfun(self): | |
error_msg = "maxfun must be > 0." | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
maxfun=-1) | |
def test_invalid_bounds_type(self, bounds): | |
error_msg = ("bounds must be a sequence or " | |
"instance of Bounds class") | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, bounds) | |
def test_incorrect_bounds(self, bounds): | |
error_msg = 'Bounds are not consistent min < max' | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, bounds) | |
def test_inf_bounds(self): | |
error_msg = 'Bounds must not be inf.' | |
bounds = Bounds([-np.inf, -1], [-2, np.inf]) | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, bounds) | |
def test_locally_biased_validation(self, locally_biased): | |
error_msg = 'locally_biased must be True or False.' | |
with pytest.raises(ValueError, match=error_msg): | |
direct(self.styblinski_tang, self.bounds_stylinski_tang, | |
locally_biased=locally_biased) | |