peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/signal
/tests
/test_dltisys.py
# Author: Jeffrey Armstrong <[email protected]> | |
# April 4, 2011 | |
import numpy as np | |
from numpy.testing import (assert_equal, | |
assert_array_almost_equal, assert_array_equal, | |
assert_allclose, assert_, assert_almost_equal, | |
suppress_warnings) | |
from pytest import raises as assert_raises | |
from scipy.signal import (dlsim, dstep, dimpulse, tf2zpk, lti, dlti, | |
StateSpace, TransferFunction, ZerosPolesGain, | |
dfreqresp, dbode, BadCoefficients) | |
class TestDLTI: | |
def test_dlsim(self): | |
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]]) | |
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]]) | |
c = np.asarray([[0.1, 0.3]]) | |
d = np.asarray([[0.0, -0.1, 0.0]]) | |
dt = 0.5 | |
# Create an input matrix with inputs down the columns (3 cols) and its | |
# respective time input vector | |
u = np.hstack((np.linspace(0, 4.0, num=5)[:, np.newaxis], | |
np.full((5, 1), 0.01), | |
np.full((5, 1), -0.002))) | |
t_in = np.linspace(0, 2.0, num=5) | |
# Define the known result | |
yout_truth = np.array([[-0.001, | |
-0.00073, | |
0.039446, | |
0.0915387, | |
0.13195948]]).T | |
xout_truth = np.asarray([[0, 0], | |
[0.0012, 0.0005], | |
[0.40233, 0.00071], | |
[1.163368, -0.079327], | |
[2.2402985, -0.3035679]]) | |
tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in) | |
assert_array_almost_equal(yout_truth, yout) | |
assert_array_almost_equal(xout_truth, xout) | |
assert_array_almost_equal(t_in, tout) | |
# Make sure input with single-dimension doesn't raise error | |
dlsim((1, 2, 3), 4) | |
# Interpolated control - inputs should have different time steps | |
# than the discrete model uses internally | |
u_sparse = u[[0, 4], :] | |
t_sparse = np.asarray([0.0, 2.0]) | |
tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse) | |
assert_array_almost_equal(yout_truth, yout) | |
assert_array_almost_equal(xout_truth, xout) | |
assert_equal(len(tout), yout.shape[0]) | |
# Transfer functions (assume dt = 0.5) | |
num = np.asarray([1.0, -0.1]) | |
den = np.asarray([0.3, 1.0, 0.2]) | |
yout_truth = np.array([[0.0, | |
0.0, | |
3.33333333333333, | |
-4.77777777777778, | |
23.0370370370370]]).T | |
# Assume use of the first column of the control input built earlier | |
tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in) | |
assert_array_almost_equal(yout, yout_truth) | |
assert_array_almost_equal(t_in, tout) | |
# Retest the same with a 1-D input vector | |
uflat = np.asarray(u[:, 0]) | |
uflat = uflat.reshape((5,)) | |
tout, yout = dlsim((num, den, 0.5), uflat, t_in) | |
assert_array_almost_equal(yout, yout_truth) | |
assert_array_almost_equal(t_in, tout) | |
# zeros-poles-gain representation | |
zd = np.array([0.5, -0.5]) | |
pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)]) | |
k = 1.0 | |
yout_truth = np.array([[0.0, 1.0, 2.0, 2.25, 2.5]]).T | |
tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in) | |
assert_array_almost_equal(yout, yout_truth) | |
assert_array_almost_equal(t_in, tout) | |
# Raise an error for continuous-time systems | |
system = lti([1], [1, 1]) | |
assert_raises(AttributeError, dlsim, system, u) | |
def test_dstep(self): | |
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]]) | |
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]]) | |
c = np.asarray([[0.1, 0.3]]) | |
d = np.asarray([[0.0, -0.1, 0.0]]) | |
dt = 0.5 | |
# Because b.shape[1] == 3, dstep should result in a tuple of three | |
# result vectors | |
yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956, | |
-0.036324, -0.093318, -0.15782348, | |
-0.226628324, -0.2969374948]), | |
np.asarray([-0.1, -0.075, -0.058, -0.04815, | |
-0.04453, -0.0461895, -0.0521812, | |
-0.061588875, -0.073549579, | |
-0.08727047595]), | |
np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239, | |
0.009081, 0.0233295, 0.03945587, | |
0.056657081, 0.0742343737])) | |
tout, yout = dstep((a, b, c, d, dt), n=10) | |
assert_equal(len(yout), 3) | |
for i in range(0, len(yout)): | |
assert_equal(yout[i].shape[0], 10) | |
assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i]) | |
# Check that the other two inputs (tf, zpk) will work as well | |
tfin = ([1.0], [1.0, 1.0], 0.5) | |
yout_tfstep = np.asarray([0.0, 1.0, 0.0]) | |
tout, yout = dstep(tfin, n=3) | |
assert_equal(len(yout), 1) | |
assert_array_almost_equal(yout[0].flatten(), yout_tfstep) | |
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,) | |
tout, yout = dstep(zpkin, n=3) | |
assert_equal(len(yout), 1) | |
assert_array_almost_equal(yout[0].flatten(), yout_tfstep) | |
# Raise an error for continuous-time systems | |
system = lti([1], [1, 1]) | |
assert_raises(AttributeError, dstep, system) | |
def test_dimpulse(self): | |
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]]) | |
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]]) | |
c = np.asarray([[0.1, 0.3]]) | |
d = np.asarray([[0.0, -0.1, 0.0]]) | |
dt = 0.5 | |
# Because b.shape[1] == 3, dimpulse should result in a tuple of three | |
# result vectors | |
yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084, | |
-0.045884, -0.056994, -0.06450548, | |
-0.068804844, -0.0703091708]), | |
np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362, | |
-0.0016595, -0.0059917, -0.009407675, | |
-0.011960704, -0.01372089695]), | |
np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771, | |
0.011471, 0.0142485, 0.01612637, | |
0.017201211, 0.0175772927])) | |
tout, yout = dimpulse((a, b, c, d, dt), n=10) | |
assert_equal(len(yout), 3) | |
for i in range(0, len(yout)): | |
assert_equal(yout[i].shape[0], 10) | |
assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i]) | |
# Check that the other two inputs (tf, zpk) will work as well | |
tfin = ([1.0], [1.0, 1.0], 0.5) | |
yout_tfimpulse = np.asarray([0.0, 1.0, -1.0]) | |
tout, yout = dimpulse(tfin, n=3) | |
assert_equal(len(yout), 1) | |
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse) | |
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,) | |
tout, yout = dimpulse(zpkin, n=3) | |
assert_equal(len(yout), 1) | |
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse) | |
# Raise an error for continuous-time systems | |
system = lti([1], [1, 1]) | |
assert_raises(AttributeError, dimpulse, system) | |
def test_dlsim_trivial(self): | |
a = np.array([[0.0]]) | |
b = np.array([[0.0]]) | |
c = np.array([[0.0]]) | |
d = np.array([[0.0]]) | |
n = 5 | |
u = np.zeros(n).reshape(-1, 1) | |
tout, yout, xout = dlsim((a, b, c, d, 1), u) | |
assert_array_equal(tout, np.arange(float(n))) | |
assert_array_equal(yout, np.zeros((n, 1))) | |
assert_array_equal(xout, np.zeros((n, 1))) | |
def test_dlsim_simple1d(self): | |
a = np.array([[0.5]]) | |
b = np.array([[0.0]]) | |
c = np.array([[1.0]]) | |
d = np.array([[0.0]]) | |
n = 5 | |
u = np.zeros(n).reshape(-1, 1) | |
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1) | |
assert_array_equal(tout, np.arange(float(n))) | |
expected = (0.5 ** np.arange(float(n))).reshape(-1, 1) | |
assert_array_equal(yout, expected) | |
assert_array_equal(xout, expected) | |
def test_dlsim_simple2d(self): | |
lambda1 = 0.5 | |
lambda2 = 0.25 | |
a = np.array([[lambda1, 0.0], | |
[0.0, lambda2]]) | |
b = np.array([[0.0], | |
[0.0]]) | |
c = np.array([[1.0, 0.0], | |
[0.0, 1.0]]) | |
d = np.array([[0.0], | |
[0.0]]) | |
n = 5 | |
u = np.zeros(n).reshape(-1, 1) | |
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1) | |
assert_array_equal(tout, np.arange(float(n))) | |
# The analytical solution: | |
expected = (np.array([lambda1, lambda2]) ** | |
np.arange(float(n)).reshape(-1, 1)) | |
assert_array_equal(yout, expected) | |
assert_array_equal(xout, expected) | |
def test_more_step_and_impulse(self): | |
lambda1 = 0.5 | |
lambda2 = 0.75 | |
a = np.array([[lambda1, 0.0], | |
[0.0, lambda2]]) | |
b = np.array([[1.0, 0.0], | |
[0.0, 1.0]]) | |
c = np.array([[1.0, 1.0]]) | |
d = np.array([[0.0, 0.0]]) | |
n = 10 | |
# Check a step response. | |
ts, ys = dstep((a, b, c, d, 1), n=n) | |
# Create the exact step response. | |
stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n)) | |
stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n)) | |
assert_allclose(ys[0][:, 0], stp0) | |
assert_allclose(ys[1][:, 0], stp1) | |
# Check an impulse response with an initial condition. | |
x0 = np.array([1.0, 1.0]) | |
ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0) | |
# Create the exact impulse response. | |
imp = (np.array([lambda1, lambda2]) ** | |
np.arange(-1, n + 1).reshape(-1, 1)) | |
imp[0, :] = 0.0 | |
# Analytical solution to impulse response | |
y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0) | |
y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0) | |
assert_allclose(yi[0][:, 0], y0) | |
assert_allclose(yi[1][:, 0], y1) | |
# Check that dt=0.1, n=3 gives 3 time values. | |
system = ([1.0], [1.0, -0.5], 0.1) | |
t, (y,) = dstep(system, n=3) | |
assert_allclose(t, [0, 0.1, 0.2]) | |
assert_array_equal(y.T, [[0, 1.0, 1.5]]) | |
t, (y,) = dimpulse(system, n=3) | |
assert_allclose(t, [0, 0.1, 0.2]) | |
assert_array_equal(y.T, [[0, 1, 0.5]]) | |
class TestDlti: | |
def test_dlti_instantiation(self): | |
# Test that lti can be instantiated. | |
dt = 0.05 | |
# TransferFunction | |
s = dlti([1], [-1], dt=dt) | |
assert_(isinstance(s, TransferFunction)) | |
assert_(isinstance(s, dlti)) | |
assert_(not isinstance(s, lti)) | |
assert_equal(s.dt, dt) | |
# ZerosPolesGain | |
s = dlti(np.array([]), np.array([-1]), 1, dt=dt) | |
assert_(isinstance(s, ZerosPolesGain)) | |
assert_(isinstance(s, dlti)) | |
assert_(not isinstance(s, lti)) | |
assert_equal(s.dt, dt) | |
# StateSpace | |
s = dlti([1], [-1], 1, 3, dt=dt) | |
assert_(isinstance(s, StateSpace)) | |
assert_(isinstance(s, dlti)) | |
assert_(not isinstance(s, lti)) | |
assert_equal(s.dt, dt) | |
# Number of inputs | |
assert_raises(ValueError, dlti, 1) | |
assert_raises(ValueError, dlti, 1, 1, 1, 1, 1) | |
class TestStateSpaceDisc: | |
def test_initialization(self): | |
# Check that all initializations work | |
dt = 0.05 | |
StateSpace(1, 1, 1, 1, dt=dt) | |
StateSpace([1], [2], [3], [4], dt=dt) | |
StateSpace(np.array([[1, 2], [3, 4]]), np.array([[1], [2]]), | |
np.array([[1, 0]]), np.array([[0]]), dt=dt) | |
StateSpace(1, 1, 1, 1, dt=True) | |
def test_conversion(self): | |
# Check the conversion functions | |
s = StateSpace(1, 2, 3, 4, dt=0.05) | |
assert_(isinstance(s.to_ss(), StateSpace)) | |
assert_(isinstance(s.to_tf(), TransferFunction)) | |
assert_(isinstance(s.to_zpk(), ZerosPolesGain)) | |
# Make sure copies work | |
assert_(StateSpace(s) is not s) | |
assert_(s.to_ss() is not s) | |
def test_properties(self): | |
# Test setters/getters for cross class properties. | |
# This implicitly tests to_tf() and to_zpk() | |
# Getters | |
s = StateSpace(1, 1, 1, 1, dt=0.05) | |
assert_equal(s.poles, [1]) | |
assert_equal(s.zeros, [0]) | |
class TestTransferFunction: | |
def test_initialization(self): | |
# Check that all initializations work | |
dt = 0.05 | |
TransferFunction(1, 1, dt=dt) | |
TransferFunction([1], [2], dt=dt) | |
TransferFunction(np.array([1]), np.array([2]), dt=dt) | |
TransferFunction(1, 1, dt=True) | |
def test_conversion(self): | |
# Check the conversion functions | |
s = TransferFunction([1, 0], [1, -1], dt=0.05) | |
assert_(isinstance(s.to_ss(), StateSpace)) | |
assert_(isinstance(s.to_tf(), TransferFunction)) | |
assert_(isinstance(s.to_zpk(), ZerosPolesGain)) | |
# Make sure copies work | |
assert_(TransferFunction(s) is not s) | |
assert_(s.to_tf() is not s) | |
def test_properties(self): | |
# Test setters/getters for cross class properties. | |
# This implicitly tests to_ss() and to_zpk() | |
# Getters | |
s = TransferFunction([1, 0], [1, -1], dt=0.05) | |
assert_equal(s.poles, [1]) | |
assert_equal(s.zeros, [0]) | |
class TestZerosPolesGain: | |
def test_initialization(self): | |
# Check that all initializations work | |
dt = 0.05 | |
ZerosPolesGain(1, 1, 1, dt=dt) | |
ZerosPolesGain([1], [2], 1, dt=dt) | |
ZerosPolesGain(np.array([1]), np.array([2]), 1, dt=dt) | |
ZerosPolesGain(1, 1, 1, dt=True) | |
def test_conversion(self): | |
# Check the conversion functions | |
s = ZerosPolesGain(1, 2, 3, dt=0.05) | |
assert_(isinstance(s.to_ss(), StateSpace)) | |
assert_(isinstance(s.to_tf(), TransferFunction)) | |
assert_(isinstance(s.to_zpk(), ZerosPolesGain)) | |
# Make sure copies work | |
assert_(ZerosPolesGain(s) is not s) | |
assert_(s.to_zpk() is not s) | |
class Test_dfreqresp: | |
def test_manual(self): | |
# Test dfreqresp() real part calculation (manual sanity check). | |
# 1st order low-pass filter: H(z) = 1 / (z - 0.2), | |
system = TransferFunction(1, [1, -0.2], dt=0.1) | |
w = [0.1, 1, 10] | |
w, H = dfreqresp(system, w=w) | |
# test real | |
expected_re = [1.2383, 0.4130, -0.7553] | |
assert_almost_equal(H.real, expected_re, decimal=4) | |
# test imag | |
expected_im = [-0.1555, -1.0214, 0.3955] | |
assert_almost_equal(H.imag, expected_im, decimal=4) | |
def test_auto(self): | |
# Test dfreqresp() real part calculation. | |
# 1st order low-pass filter: H(z) = 1 / (z - 0.2), | |
system = TransferFunction(1, [1, -0.2], dt=0.1) | |
w = [0.1, 1, 10, 100] | |
w, H = dfreqresp(system, w=w) | |
jw = np.exp(w * 1j) | |
y = np.polyval(system.num, jw) / np.polyval(system.den, jw) | |
# test real | |
expected_re = y.real | |
assert_almost_equal(H.real, expected_re) | |
# test imag | |
expected_im = y.imag | |
assert_almost_equal(H.imag, expected_im) | |
def test_freq_range(self): | |
# Test that freqresp() finds a reasonable frequency range. | |
# 1st order low-pass filter: H(z) = 1 / (z - 0.2), | |
# Expected range is from 0.01 to 10. | |
system = TransferFunction(1, [1, -0.2], dt=0.1) | |
n = 10 | |
expected_w = np.linspace(0, np.pi, 10, endpoint=False) | |
w, H = dfreqresp(system, n=n) | |
assert_almost_equal(w, expected_w) | |
def test_pole_one(self): | |
# Test that freqresp() doesn't fail on a system with a pole at 0. | |
# integrator, pole at zero: H(s) = 1 / s | |
system = TransferFunction([1], [1, -1], dt=0.1) | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, message="divide by zero") | |
sup.filter(RuntimeWarning, message="invalid value encountered") | |
w, H = dfreqresp(system, n=2) | |
assert_equal(w[0], 0.) # a fail would give not-a-number | |
def test_error(self): | |
# Raise an error for continuous-time systems | |
system = lti([1], [1, 1]) | |
assert_raises(AttributeError, dfreqresp, system) | |
def test_from_state_space(self): | |
# H(z) = 2 / z^3 - 0.5 * z^2 | |
system_TF = dlti([2], [1, -0.5, 0, 0]) | |
A = np.array([[0.5, 0, 0], | |
[1, 0, 0], | |
[0, 1, 0]]) | |
B = np.array([[1, 0, 0]]).T | |
C = np.array([[0, 0, 2]]) | |
D = 0 | |
system_SS = dlti(A, B, C, D) | |
w = 10.0**np.arange(-3,0,.5) | |
with suppress_warnings() as sup: | |
sup.filter(BadCoefficients) | |
w1, H1 = dfreqresp(system_TF, w=w) | |
w2, H2 = dfreqresp(system_SS, w=w) | |
assert_almost_equal(H1, H2) | |
def test_from_zpk(self): | |
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2), | |
system_ZPK = dlti([],[0.2],0.3) | |
system_TF = dlti(0.3, [1, -0.2]) | |
w = [0.1, 1, 10, 100] | |
w1, H1 = dfreqresp(system_ZPK, w=w) | |
w2, H2 = dfreqresp(system_TF, w=w) | |
assert_almost_equal(H1, H2) | |
class Test_bode: | |
def test_manual(self): | |
# Test bode() magnitude calculation (manual sanity check). | |
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2), | |
dt = 0.1 | |
system = TransferFunction(0.3, [1, -0.2], dt=dt) | |
w = [0.1, 0.5, 1, np.pi] | |
w2, mag, phase = dbode(system, w=w) | |
# Test mag | |
expected_mag = [-8.5329, -8.8396, -9.6162, -12.0412] | |
assert_almost_equal(mag, expected_mag, decimal=4) | |
# Test phase | |
expected_phase = [-7.1575, -35.2814, -67.9809, -180.0000] | |
assert_almost_equal(phase, expected_phase, decimal=4) | |
# Test frequency | |
assert_equal(np.array(w) / dt, w2) | |
def test_auto(self): | |
# Test bode() magnitude calculation. | |
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2), | |
system = TransferFunction(0.3, [1, -0.2], dt=0.1) | |
w = np.array([0.1, 0.5, 1, np.pi]) | |
w2, mag, phase = dbode(system, w=w) | |
jw = np.exp(w * 1j) | |
y = np.polyval(system.num, jw) / np.polyval(system.den, jw) | |
# Test mag | |
expected_mag = 20.0 * np.log10(abs(y)) | |
assert_almost_equal(mag, expected_mag) | |
# Test phase | |
expected_phase = np.rad2deg(np.angle(y)) | |
assert_almost_equal(phase, expected_phase) | |
def test_range(self): | |
# Test that bode() finds a reasonable frequency range. | |
# 1st order low-pass filter: H(s) = 0.3 / (z - 0.2), | |
dt = 0.1 | |
system = TransferFunction(0.3, [1, -0.2], dt=0.1) | |
n = 10 | |
# Expected range is from 0.01 to 10. | |
expected_w = np.linspace(0, np.pi, n, endpoint=False) / dt | |
w, mag, phase = dbode(system, n=n) | |
assert_almost_equal(w, expected_w) | |
def test_pole_one(self): | |
# Test that freqresp() doesn't fail on a system with a pole at 0. | |
# integrator, pole at zero: H(s) = 1 / s | |
system = TransferFunction([1], [1, -1], dt=0.1) | |
with suppress_warnings() as sup: | |
sup.filter(RuntimeWarning, message="divide by zero") | |
sup.filter(RuntimeWarning, message="invalid value encountered") | |
w, mag, phase = dbode(system, n=2) | |
assert_equal(w[0], 0.) # a fail would give not-a-number | |
def test_imaginary(self): | |
# bode() should not fail on a system with pure imaginary poles. | |
# The test passes if bode doesn't raise an exception. | |
system = TransferFunction([1], [1, 0, 100], dt=0.1) | |
dbode(system, n=2) | |
def test_error(self): | |
# Raise an error for continuous-time systems | |
system = lti([1], [1, 1]) | |
assert_raises(AttributeError, dbode, system) | |
class TestTransferFunctionZConversion: | |
"""Test private conversions between 'z' and 'z**-1' polynomials.""" | |
def test_full(self): | |
# Numerator and denominator same order | |
num = [2, 3, 4] | |
den = [5, 6, 7] | |
num2, den2 = TransferFunction._z_to_zinv(num, den) | |
assert_equal(num, num2) | |
assert_equal(den, den2) | |
num2, den2 = TransferFunction._zinv_to_z(num, den) | |
assert_equal(num, num2) | |
assert_equal(den, den2) | |
def test_numerator(self): | |
# Numerator lower order than denominator | |
num = [2, 3] | |
den = [5, 6, 7] | |
num2, den2 = TransferFunction._z_to_zinv(num, den) | |
assert_equal([0, 2, 3], num2) | |
assert_equal(den, den2) | |
num2, den2 = TransferFunction._zinv_to_z(num, den) | |
assert_equal([2, 3, 0], num2) | |
assert_equal(den, den2) | |
def test_denominator(self): | |
# Numerator higher order than denominator | |
num = [2, 3, 4] | |
den = [5, 6] | |
num2, den2 = TransferFunction._z_to_zinv(num, den) | |
assert_equal(num, num2) | |
assert_equal([0, 5, 6], den2) | |
num2, den2 = TransferFunction._zinv_to_z(num, den) | |
assert_equal(num, num2) | |
assert_equal([5, 6, 0], den2) | |