peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/decomposition
/_sparse_pca.py
"""Matrix factorization with Sparse PCA.""" | |
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort | |
# License: BSD 3 clause | |
from numbers import Integral, Real | |
import numpy as np | |
from ..base import ( | |
BaseEstimator, | |
ClassNamePrefixFeaturesOutMixin, | |
TransformerMixin, | |
_fit_context, | |
) | |
from ..linear_model import ridge_regression | |
from ..utils import check_random_state | |
from ..utils._param_validation import Hidden, Interval, StrOptions | |
from ..utils.extmath import svd_flip | |
from ..utils.validation import check_array, check_is_fitted | |
from ._dict_learning import MiniBatchDictionaryLearning, dict_learning | |
class _BaseSparsePCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator): | |
"""Base class for SparsePCA and MiniBatchSparsePCA""" | |
_parameter_constraints: dict = { | |
"n_components": [None, Interval(Integral, 1, None, closed="left")], | |
"alpha": [Interval(Real, 0.0, None, closed="left")], | |
"ridge_alpha": [Interval(Real, 0.0, None, closed="left")], | |
"max_iter": [Interval(Integral, 0, None, closed="left")], | |
"tol": [Interval(Real, 0.0, None, closed="left")], | |
"method": [StrOptions({"lars", "cd"})], | |
"n_jobs": [Integral, None], | |
"verbose": ["verbose"], | |
"random_state": ["random_state"], | |
} | |
def __init__( | |
self, | |
n_components=None, | |
*, | |
alpha=1, | |
ridge_alpha=0.01, | |
max_iter=1000, | |
tol=1e-8, | |
method="lars", | |
n_jobs=None, | |
verbose=False, | |
random_state=None, | |
): | |
self.n_components = n_components | |
self.alpha = alpha | |
self.ridge_alpha = ridge_alpha | |
self.max_iter = max_iter | |
self.tol = tol | |
self.method = method | |
self.n_jobs = n_jobs | |
self.verbose = verbose | |
self.random_state = random_state | |
def fit(self, X, y=None): | |
"""Fit the model from data in X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
Training vector, where `n_samples` is the number of samples | |
and `n_features` is the number of features. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Returns the instance itself. | |
""" | |
random_state = check_random_state(self.random_state) | |
X = self._validate_data(X) | |
self.mean_ = X.mean(axis=0) | |
X = X - self.mean_ | |
if self.n_components is None: | |
n_components = X.shape[1] | |
else: | |
n_components = self.n_components | |
return self._fit(X, n_components, random_state) | |
def transform(self, X): | |
"""Least Squares projection of the data onto the sparse components. | |
To avoid instability issues in case the system is under-determined, | |
regularization can be applied (Ridge regression) via the | |
`ridge_alpha` parameter. | |
Note that Sparse PCA components orthogonality is not enforced as in PCA | |
hence one cannot use a simple linear projection. | |
Parameters | |
---------- | |
X : ndarray of shape (n_samples, n_features) | |
Test data to be transformed, must have the same number of | |
features as the data used to train the model. | |
Returns | |
------- | |
X_new : ndarray of shape (n_samples, n_components) | |
Transformed data. | |
""" | |
check_is_fitted(self) | |
X = self._validate_data(X, reset=False) | |
X = X - self.mean_ | |
U = ridge_regression( | |
self.components_.T, X.T, self.ridge_alpha, solver="cholesky" | |
) | |
return U | |
def inverse_transform(self, X): | |
"""Transform data from the latent space to the original space. | |
This inversion is an approximation due to the loss of information | |
induced by the forward decomposition. | |
.. versionadded:: 1.2 | |
Parameters | |
---------- | |
X : ndarray of shape (n_samples, n_components) | |
Data in the latent space. | |
Returns | |
------- | |
X_original : ndarray of shape (n_samples, n_features) | |
Reconstructed data in the original space. | |
""" | |
check_is_fitted(self) | |
X = check_array(X) | |
return (X @ self.components_) + self.mean_ | |
def _n_features_out(self): | |
"""Number of transformed output features.""" | |
return self.components_.shape[0] | |
def _more_tags(self): | |
return { | |
"preserves_dtype": [np.float64, np.float32], | |
} | |
class SparsePCA(_BaseSparsePCA): | |
"""Sparse Principal Components Analysis (SparsePCA). | |
Finds the set of sparse components that can optimally reconstruct | |
the data. The amount of sparseness is controllable by the coefficient | |
of the L1 penalty, given by the parameter alpha. | |
Read more in the :ref:`User Guide <SparsePCA>`. | |
Parameters | |
---------- | |
n_components : int, default=None | |
Number of sparse atoms to extract. If None, then ``n_components`` | |
is set to ``n_features``. | |
alpha : float, default=1 | |
Sparsity controlling parameter. Higher values lead to sparser | |
components. | |
ridge_alpha : float, default=0.01 | |
Amount of ridge shrinkage to apply in order to improve | |
conditioning when calling the transform method. | |
max_iter : int, default=1000 | |
Maximum number of iterations to perform. | |
tol : float, default=1e-8 | |
Tolerance for the stopping condition. | |
method : {'lars', 'cd'}, default='lars' | |
Method to be used for optimization. | |
lars: uses the least angle regression method to solve the lasso problem | |
(linear_model.lars_path) | |
cd: uses the coordinate descent method to compute the | |
Lasso solution (linear_model.Lasso). Lars will be faster if | |
the estimated components are sparse. | |
n_jobs : int, default=None | |
Number of parallel jobs to run. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
U_init : ndarray of shape (n_samples, n_components), default=None | |
Initial values for the loadings for warm restart scenarios. Only used | |
if `U_init` and `V_init` are not None. | |
V_init : ndarray of shape (n_components, n_features), default=None | |
Initial values for the components for warm restart scenarios. Only used | |
if `U_init` and `V_init` are not None. | |
verbose : int or bool, default=False | |
Controls the verbosity; the higher, the more messages. Defaults to 0. | |
random_state : int, RandomState instance or None, default=None | |
Used during dictionary learning. Pass an int for reproducible results | |
across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
Attributes | |
---------- | |
components_ : ndarray of shape (n_components, n_features) | |
Sparse components extracted from the data. | |
error_ : ndarray | |
Vector of errors at each iteration. | |
n_components_ : int | |
Estimated number of components. | |
.. versionadded:: 0.23 | |
n_iter_ : int | |
Number of iterations run. | |
mean_ : ndarray of shape (n_features,) | |
Per-feature empirical mean, estimated from the training set. | |
Equal to ``X.mean(axis=0)``. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
PCA : Principal Component Analysis implementation. | |
MiniBatchSparsePCA : Mini batch variant of `SparsePCA` that is faster but less | |
accurate. | |
DictionaryLearning : Generic dictionary learning problem using a sparse code. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.datasets import make_friedman1 | |
>>> from sklearn.decomposition import SparsePCA | |
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0) | |
>>> transformer = SparsePCA(n_components=5, random_state=0) | |
>>> transformer.fit(X) | |
SparsePCA(...) | |
>>> X_transformed = transformer.transform(X) | |
>>> X_transformed.shape | |
(200, 5) | |
>>> # most values in the components_ are zero (sparsity) | |
>>> np.mean(transformer.components_ == 0) | |
0.9666... | |
""" | |
_parameter_constraints: dict = { | |
**_BaseSparsePCA._parameter_constraints, | |
"U_init": [None, np.ndarray], | |
"V_init": [None, np.ndarray], | |
} | |
def __init__( | |
self, | |
n_components=None, | |
*, | |
alpha=1, | |
ridge_alpha=0.01, | |
max_iter=1000, | |
tol=1e-8, | |
method="lars", | |
n_jobs=None, | |
U_init=None, | |
V_init=None, | |
verbose=False, | |
random_state=None, | |
): | |
super().__init__( | |
n_components=n_components, | |
alpha=alpha, | |
ridge_alpha=ridge_alpha, | |
max_iter=max_iter, | |
tol=tol, | |
method=method, | |
n_jobs=n_jobs, | |
verbose=verbose, | |
random_state=random_state, | |
) | |
self.U_init = U_init | |
self.V_init = V_init | |
def _fit(self, X, n_components, random_state): | |
"""Specialized `fit` for SparsePCA.""" | |
code_init = self.V_init.T if self.V_init is not None else None | |
dict_init = self.U_init.T if self.U_init is not None else None | |
code, dictionary, E, self.n_iter_ = dict_learning( | |
X.T, | |
n_components, | |
alpha=self.alpha, | |
tol=self.tol, | |
max_iter=self.max_iter, | |
method=self.method, | |
n_jobs=self.n_jobs, | |
verbose=self.verbose, | |
random_state=random_state, | |
code_init=code_init, | |
dict_init=dict_init, | |
return_n_iter=True, | |
) | |
# flip eigenvectors' sign to enforce deterministic output | |
code, dictionary = svd_flip(code, dictionary, u_based_decision=False) | |
self.components_ = code.T | |
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis] | |
components_norm[components_norm == 0] = 1 | |
self.components_ /= components_norm | |
self.n_components_ = len(self.components_) | |
self.error_ = E | |
return self | |
class MiniBatchSparsePCA(_BaseSparsePCA): | |
"""Mini-batch Sparse Principal Components Analysis. | |
Finds the set of sparse components that can optimally reconstruct | |
the data. The amount of sparseness is controllable by the coefficient | |
of the L1 penalty, given by the parameter alpha. | |
For an example comparing sparse PCA to PCA, see | |
:ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` | |
Read more in the :ref:`User Guide <SparsePCA>`. | |
Parameters | |
---------- | |
n_components : int, default=None | |
Number of sparse atoms to extract. If None, then ``n_components`` | |
is set to ``n_features``. | |
alpha : int, default=1 | |
Sparsity controlling parameter. Higher values lead to sparser | |
components. | |
ridge_alpha : float, default=0.01 | |
Amount of ridge shrinkage to apply in order to improve | |
conditioning when calling the transform method. | |
max_iter : int, default=1_000 | |
Maximum number of iterations over the complete dataset before | |
stopping independently of any early stopping criterion heuristics. | |
.. versionadded:: 1.2 | |
.. deprecated:: 1.4 | |
`max_iter=None` is deprecated in 1.4 and will be removed in 1.6. | |
Use the default value (i.e. `100`) instead. | |
callback : callable, default=None | |
Callable that gets invoked every five iterations. | |
batch_size : int, default=3 | |
The number of features to take in each mini batch. | |
verbose : int or bool, default=False | |
Controls the verbosity; the higher, the more messages. Defaults to 0. | |
shuffle : bool, default=True | |
Whether to shuffle the data before splitting it in batches. | |
n_jobs : int, default=None | |
Number of parallel jobs to run. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. See :term:`Glossary <n_jobs>` | |
for more details. | |
method : {'lars', 'cd'}, default='lars' | |
Method to be used for optimization. | |
lars: uses the least angle regression method to solve the lasso problem | |
(linear_model.lars_path) | |
cd: uses the coordinate descent method to compute the | |
Lasso solution (linear_model.Lasso). Lars will be faster if | |
the estimated components are sparse. | |
random_state : int, RandomState instance or None, default=None | |
Used for random shuffling when ``shuffle`` is set to ``True``, | |
during online dictionary learning. Pass an int for reproducible results | |
across multiple function calls. | |
See :term:`Glossary <random_state>`. | |
tol : float, default=1e-3 | |
Control early stopping based on the norm of the differences in the | |
dictionary between 2 steps. | |
To disable early stopping based on changes in the dictionary, set | |
`tol` to 0.0. | |
.. versionadded:: 1.1 | |
max_no_improvement : int or None, default=10 | |
Control early stopping based on the consecutive number of mini batches | |
that does not yield an improvement on the smoothed cost function. | |
To disable convergence detection based on cost function, set | |
`max_no_improvement` to `None`. | |
.. versionadded:: 1.1 | |
Attributes | |
---------- | |
components_ : ndarray of shape (n_components, n_features) | |
Sparse components extracted from the data. | |
n_components_ : int | |
Estimated number of components. | |
.. versionadded:: 0.23 | |
n_iter_ : int | |
Number of iterations run. | |
mean_ : ndarray of shape (n_features,) | |
Per-feature empirical mean, estimated from the training set. | |
Equal to ``X.mean(axis=0)``. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
DictionaryLearning : Find a dictionary that sparsely encodes data. | |
IncrementalPCA : Incremental principal components analysis. | |
PCA : Principal component analysis. | |
SparsePCA : Sparse Principal Components Analysis. | |
TruncatedSVD : Dimensionality reduction using truncated SVD. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.datasets import make_friedman1 | |
>>> from sklearn.decomposition import MiniBatchSparsePCA | |
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0) | |
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50, | |
... max_iter=10, random_state=0) | |
>>> transformer.fit(X) | |
MiniBatchSparsePCA(...) | |
>>> X_transformed = transformer.transform(X) | |
>>> X_transformed.shape | |
(200, 5) | |
>>> # most values in the components_ are zero (sparsity) | |
>>> np.mean(transformer.components_ == 0) | |
0.9... | |
""" | |
_parameter_constraints: dict = { | |
**_BaseSparsePCA._parameter_constraints, | |
"max_iter": [Interval(Integral, 0, None, closed="left"), Hidden(None)], | |
"callback": [None, callable], | |
"batch_size": [Interval(Integral, 1, None, closed="left")], | |
"shuffle": ["boolean"], | |
"max_no_improvement": [Interval(Integral, 0, None, closed="left"), None], | |
} | |
def __init__( | |
self, | |
n_components=None, | |
*, | |
alpha=1, | |
ridge_alpha=0.01, | |
max_iter=1_000, | |
callback=None, | |
batch_size=3, | |
verbose=False, | |
shuffle=True, | |
n_jobs=None, | |
method="lars", | |
random_state=None, | |
tol=1e-3, | |
max_no_improvement=10, | |
): | |
super().__init__( | |
n_components=n_components, | |
alpha=alpha, | |
ridge_alpha=ridge_alpha, | |
max_iter=max_iter, | |
tol=tol, | |
method=method, | |
n_jobs=n_jobs, | |
verbose=verbose, | |
random_state=random_state, | |
) | |
self.callback = callback | |
self.batch_size = batch_size | |
self.shuffle = shuffle | |
self.max_no_improvement = max_no_improvement | |
def _fit(self, X, n_components, random_state): | |
"""Specialized `fit` for MiniBatchSparsePCA.""" | |
transform_algorithm = "lasso_" + self.method | |
est = MiniBatchDictionaryLearning( | |
n_components=n_components, | |
alpha=self.alpha, | |
max_iter=self.max_iter, | |
dict_init=None, | |
batch_size=self.batch_size, | |
shuffle=self.shuffle, | |
n_jobs=self.n_jobs, | |
fit_algorithm=self.method, | |
random_state=random_state, | |
transform_algorithm=transform_algorithm, | |
transform_alpha=self.alpha, | |
verbose=self.verbose, | |
callback=self.callback, | |
tol=self.tol, | |
max_no_improvement=self.max_no_improvement, | |
) | |
est.set_output(transform="default") | |
est.fit(X.T) | |
self.components_, self.n_iter_ = est.transform(X.T).T, est.n_iter_ | |
components_norm = np.linalg.norm(self.components_, axis=1)[:, np.newaxis] | |
components_norm[components_norm == 0] = 1 | |
self.components_ /= components_norm | |
self.n_components_ = len(self.components_) | |
return self | |