peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/decomposition
/tests
/test_nmf.py
import re | |
import sys | |
import warnings | |
from io import StringIO | |
import numpy as np | |
import pytest | |
from scipy import linalg | |
from sklearn.base import clone | |
from sklearn.decomposition import NMF, MiniBatchNMF, non_negative_factorization | |
from sklearn.decomposition import _nmf as nmf # For testing internals | |
from sklearn.exceptions import ConvergenceWarning | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
ignore_warnings, | |
) | |
from sklearn.utils.extmath import squared_norm | |
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS | |
def test_convergence_warning(Estimator, solver): | |
convergence_warning = ( | |
"Maximum number of iterations 1 reached. Increase it to improve convergence." | |
) | |
A = np.ones((2, 2)) | |
with pytest.warns(ConvergenceWarning, match=convergence_warning): | |
Estimator(max_iter=1, n_components="auto", **solver).fit(A) | |
def test_initialize_nn_output(): | |
# Test that initialization does not return negative values | |
rng = np.random.mtrand.RandomState(42) | |
data = np.abs(rng.randn(10, 10)) | |
for init in ("random", "nndsvd", "nndsvda", "nndsvdar"): | |
W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) | |
assert not ((W < 0).any() or (H < 0).any()) | |
# TODO(1.6): remove the warning filter for `n_components` | |
def test_parameter_checking(): | |
# Here we only check for invalid parameter values that are not already | |
# automatically tested in the common tests. | |
A = np.ones((2, 2)) | |
msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0" | |
with pytest.raises(ValueError, match=msg): | |
NMF(solver="cd", beta_loss=1.0).fit(A) | |
msg = "Negative values in data passed to" | |
with pytest.raises(ValueError, match=msg): | |
NMF().fit(-A) | |
clf = NMF(2, tol=0.1).fit(A) | |
with pytest.raises(ValueError, match=msg): | |
clf.transform(-A) | |
with pytest.raises(ValueError, match=msg): | |
nmf._initialize_nmf(-A, 2, "nndsvd") | |
for init in ["nndsvd", "nndsvda", "nndsvdar"]: | |
msg = re.escape( | |
"init = '{}' can only be used when " | |
"n_components <= min(n_samples, n_features)".format(init) | |
) | |
with pytest.raises(ValueError, match=msg): | |
NMF(3, init=init).fit(A) | |
with pytest.raises(ValueError, match=msg): | |
MiniBatchNMF(3, init=init).fit(A) | |
with pytest.raises(ValueError, match=msg): | |
nmf._initialize_nmf(A, 3, init) | |
def test_initialize_close(): | |
# Test NNDSVD error | |
# Test that _initialize_nmf error is less than the standard deviation of | |
# the entries in the matrix. | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(10, 10)) | |
W, H = nmf._initialize_nmf(A, 10, init="nndsvd") | |
error = linalg.norm(np.dot(W, H) - A) | |
sdev = linalg.norm(A - A.mean()) | |
assert error <= sdev | |
def test_initialize_variants(): | |
# Test NNDSVD variants correctness | |
# Test that the variants 'nndsvda' and 'nndsvdar' differ from basic | |
# 'nndsvd' only where the basic version has zeros. | |
rng = np.random.mtrand.RandomState(42) | |
data = np.abs(rng.randn(10, 10)) | |
W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd") | |
Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda") | |
War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0) | |
for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): | |
assert_almost_equal(evl[ref != 0], ref[ref != 0]) | |
# ignore UserWarning raised when both solver='mu' and init='nndsvd' | |
def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H): | |
# Test that the decomposition does not contain negative values | |
A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)] | |
model = Estimator( | |
n_components=2, | |
init=init, | |
alpha_W=alpha_W, | |
alpha_H=alpha_H, | |
random_state=0, | |
**solver, | |
) | |
transf = model.fit_transform(A) | |
assert not ((model.components_ < 0).any() or (transf < 0).any()) | |
def test_nmf_fit_close(Estimator, solver): | |
rng = np.random.mtrand.RandomState(42) | |
# Test that the fit is not too far away | |
pnmf = Estimator( | |
5, | |
init="nndsvdar", | |
random_state=0, | |
max_iter=600, | |
**solver, | |
) | |
X = np.abs(rng.randn(6, 5)) | |
assert pnmf.fit(X).reconstruction_err_ < 0.1 | |
def test_nmf_true_reconstruction(): | |
# Test that the fit is not too far away from an exact solution | |
# (by construction) | |
n_samples = 15 | |
n_features = 10 | |
n_components = 5 | |
beta_loss = 1 | |
batch_size = 3 | |
max_iter = 1000 | |
rng = np.random.mtrand.RandomState(42) | |
W_true = np.zeros([n_samples, n_components]) | |
W_array = np.abs(rng.randn(n_samples)) | |
for j in range(n_components): | |
W_true[j % n_samples, j] = W_array[j % n_samples] | |
H_true = np.zeros([n_components, n_features]) | |
H_array = np.abs(rng.randn(n_components)) | |
for j in range(n_features): | |
H_true[j % n_components, j] = H_array[j % n_components] | |
X = np.dot(W_true, H_true) | |
model = NMF( | |
n_components=n_components, | |
solver="mu", | |
beta_loss=beta_loss, | |
max_iter=max_iter, | |
random_state=0, | |
) | |
transf = model.fit_transform(X) | |
X_calc = np.dot(transf, model.components_) | |
assert model.reconstruction_err_ < 0.1 | |
assert_allclose(X, X_calc) | |
mbmodel = MiniBatchNMF( | |
n_components=n_components, | |
beta_loss=beta_loss, | |
batch_size=batch_size, | |
random_state=0, | |
max_iter=max_iter, | |
) | |
transf = mbmodel.fit_transform(X) | |
X_calc = np.dot(transf, mbmodel.components_) | |
assert mbmodel.reconstruction_err_ < 0.1 | |
assert_allclose(X, X_calc, atol=1) | |
def test_nmf_transform(solver): | |
# Test that fit_transform is equivalent to fit.transform for NMF | |
# Test that NMF.transform returns close values | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(6, 5)) | |
m = NMF( | |
solver=solver, | |
n_components=3, | |
init="random", | |
random_state=0, | |
tol=1e-6, | |
) | |
ft = m.fit_transform(A) | |
t = m.transform(A) | |
assert_allclose(ft, t, atol=1e-1) | |
def test_minibatch_nmf_transform(): | |
# Test that fit_transform is equivalent to fit.transform for MiniBatchNMF | |
# Only guaranteed with fresh restarts | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(6, 5)) | |
m = MiniBatchNMF( | |
n_components=3, | |
random_state=0, | |
tol=1e-3, | |
fresh_restarts=True, | |
) | |
ft = m.fit_transform(A) | |
t = m.transform(A) | |
assert_allclose(ft, t) | |
def test_nmf_transform_custom_init(Estimator, solver): | |
# Smoke test that checks if NMF.transform works with custom initialization | |
random_state = np.random.RandomState(0) | |
A = np.abs(random_state.randn(6, 5)) | |
n_components = 4 | |
avg = np.sqrt(A.mean() / n_components) | |
H_init = np.abs(avg * random_state.randn(n_components, 5)) | |
W_init = np.abs(avg * random_state.randn(6, n_components)) | |
m = Estimator( | |
n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver | |
) | |
m.fit_transform(A, W=W_init, H=H_init) | |
m.transform(A) | |
def test_nmf_inverse_transform(solver): | |
# Test that NMF.inverse_transform returns close values | |
random_state = np.random.RandomState(0) | |
A = np.abs(random_state.randn(6, 4)) | |
m = NMF( | |
solver=solver, | |
n_components=4, | |
init="random", | |
random_state=0, | |
max_iter=1000, | |
) | |
ft = m.fit_transform(A) | |
A_new = m.inverse_transform(ft) | |
assert_array_almost_equal(A, A_new, decimal=2) | |
# TODO(1.6): remove the warning filter | |
def test_mbnmf_inverse_transform(): | |
# Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform | |
# is close to the identity | |
rng = np.random.RandomState(0) | |
A = np.abs(rng.randn(6, 4)) | |
nmf = MiniBatchNMF( | |
random_state=rng, | |
max_iter=500, | |
init="nndsvdar", | |
fresh_restarts=True, | |
) | |
ft = nmf.fit_transform(A) | |
A_new = nmf.inverse_transform(ft) | |
assert_allclose(A, A_new, rtol=1e-3, atol=1e-2) | |
def test_n_components_greater_n_features(Estimator): | |
# Smoke test for the case of more components than features. | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(30, 10)) | |
Estimator(n_components=15, random_state=0, tol=1e-2).fit(A) | |
def test_nmf_sparse_input(Estimator, solver, sparse_container, alpha_W, alpha_H): | |
# Test that sparse matrices are accepted as input | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(10, 10)) | |
A[:, 2 * np.arange(5)] = 0 | |
A_sparse = sparse_container(A) | |
est1 = Estimator( | |
n_components=5, | |
init="random", | |
alpha_W=alpha_W, | |
alpha_H=alpha_H, | |
random_state=0, | |
tol=0, | |
max_iter=100, | |
**solver, | |
) | |
est2 = clone(est1) | |
W1 = est1.fit_transform(A) | |
W2 = est2.fit_transform(A_sparse) | |
H1 = est1.components_ | |
H2 = est2.components_ | |
assert_allclose(W1, W2) | |
assert_allclose(H1, H2) | |
def test_nmf_sparse_transform(Estimator, solver, csc_container): | |
# Test that transform works on sparse data. Issue #2124 | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(3, 2)) | |
A[1, 1] = 0 | |
A = csc_container(A) | |
model = Estimator(random_state=0, n_components=2, max_iter=400, **solver) | |
A_fit_tr = model.fit_transform(A) | |
A_tr = model.transform(A) | |
assert_allclose(A_fit_tr, A_tr, atol=1e-1) | |
# TODO(1.6): remove the warning filter | |
def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H): | |
# Test that the function is called in the same way, either directly | |
# or through the NMF class | |
max_iter = 500 | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(10, 10)) | |
A[:, 2 * np.arange(5)] = 0 | |
W_nmf, H, _ = non_negative_factorization( | |
A, | |
init=init, | |
solver=solver, | |
max_iter=max_iter, | |
alpha_W=alpha_W, | |
alpha_H=alpha_H, | |
random_state=1, | |
tol=1e-2, | |
) | |
W_nmf_2, H, _ = non_negative_factorization( | |
A, | |
H=H, | |
update_H=False, | |
init=init, | |
solver=solver, | |
max_iter=max_iter, | |
alpha_W=alpha_W, | |
alpha_H=alpha_H, | |
random_state=1, | |
tol=1e-2, | |
) | |
model_class = NMF( | |
init=init, | |
solver=solver, | |
max_iter=max_iter, | |
alpha_W=alpha_W, | |
alpha_H=alpha_H, | |
random_state=1, | |
tol=1e-2, | |
) | |
W_cls = model_class.fit_transform(A) | |
W_cls_2 = model_class.transform(A) | |
assert_allclose(W_nmf, W_cls) | |
assert_allclose(W_nmf_2, W_cls_2) | |
def test_non_negative_factorization_checking(): | |
# Note that the validity of parameter types and range of possible values | |
# for scalar numerical or str parameters is already checked in the common | |
# tests. Here we only check for problems that cannot be captured by simple | |
# declarative constraints on the valid parameter values. | |
A = np.ones((2, 2)) | |
# Test parameters checking in public function | |
nnmf = non_negative_factorization | |
msg = re.escape("Negative values in data passed to NMF (input H)") | |
with pytest.raises(ValueError, match=msg): | |
nnmf(A, A, -A, 2, init="custom") | |
msg = re.escape("Negative values in data passed to NMF (input W)") | |
with pytest.raises(ValueError, match=msg): | |
nnmf(A, -A, A, 2, init="custom") | |
msg = re.escape("Array passed to NMF (input H) is full of zeros") | |
with pytest.raises(ValueError, match=msg): | |
nnmf(A, A, 0 * A, 2, init="custom") | |
def _beta_divergence_dense(X, W, H, beta): | |
"""Compute the beta-divergence of X and W.H for dense array only. | |
Used as a reference for testing nmf._beta_divergence. | |
""" | |
WH = np.dot(W, H) | |
if beta == 2: | |
return squared_norm(X - WH) / 2 | |
WH_Xnonzero = WH[X != 0] | |
X_nonzero = X[X != 0] | |
np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero) | |
if beta == 1: | |
res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero)) | |
res += WH.sum() - X.sum() | |
elif beta == 0: | |
div = X_nonzero / WH_Xnonzero | |
res = np.sum(div) - X.size - np.sum(np.log(div)) | |
else: | |
res = (X_nonzero**beta).sum() | |
res += (beta - 1) * (WH**beta).sum() | |
res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum() | |
res /= beta * (beta - 1) | |
return res | |
def test_beta_divergence(csr_container): | |
# Compare _beta_divergence with the reference _beta_divergence_dense | |
n_samples = 20 | |
n_features = 10 | |
n_components = 5 | |
beta_losses = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0] | |
# initialization | |
rng = np.random.mtrand.RandomState(42) | |
X = rng.randn(n_samples, n_features) | |
np.clip(X, 0, None, out=X) | |
X_csr = csr_container(X) | |
W, H = nmf._initialize_nmf(X, n_components, init="random", random_state=42) | |
for beta in beta_losses: | |
ref = _beta_divergence_dense(X, W, H, beta) | |
loss = nmf._beta_divergence(X, W, H, beta) | |
loss_csr = nmf._beta_divergence(X_csr, W, H, beta) | |
assert_almost_equal(ref, loss, decimal=7) | |
assert_almost_equal(ref, loss_csr, decimal=7) | |
def test_special_sparse_dot(csr_container): | |
# Test the function that computes np.dot(W, H), only where X is non zero. | |
n_samples = 10 | |
n_features = 5 | |
n_components = 3 | |
rng = np.random.mtrand.RandomState(42) | |
X = rng.randn(n_samples, n_features) | |
np.clip(X, 0, None, out=X) | |
X_csr = csr_container(X) | |
W = np.abs(rng.randn(n_samples, n_components)) | |
H = np.abs(rng.randn(n_components, n_features)) | |
WH_safe = nmf._special_sparse_dot(W, H, X_csr) | |
WH = nmf._special_sparse_dot(W, H, X) | |
# test that both results have same values, in X_csr nonzero elements | |
ii, jj = X_csr.nonzero() | |
WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel() | |
assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10) | |
# test that WH_safe and X_csr have the same sparse structure | |
assert_array_equal(WH_safe.indices, X_csr.indices) | |
assert_array_equal(WH_safe.indptr, X_csr.indptr) | |
assert_array_equal(WH_safe.shape, X_csr.shape) | |
def test_nmf_multiplicative_update_sparse(csr_container): | |
# Compare sparse and dense input in multiplicative update NMF | |
# Also test continuity of the results with respect to beta_loss parameter | |
n_samples = 20 | |
n_features = 10 | |
n_components = 5 | |
alpha = 0.1 | |
l1_ratio = 0.5 | |
n_iter = 20 | |
# initialization | |
rng = np.random.mtrand.RandomState(1337) | |
X = rng.randn(n_samples, n_features) | |
X = np.abs(X) | |
X_csr = csr_container(X) | |
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42) | |
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5): | |
# Reference with dense array X | |
W, H = W0.copy(), H0.copy() | |
W1, H1, _ = non_negative_factorization( | |
X, | |
W, | |
H, | |
n_components, | |
init="custom", | |
update_H=True, | |
solver="mu", | |
beta_loss=beta_loss, | |
max_iter=n_iter, | |
alpha_W=alpha, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
) | |
# Compare with sparse X | |
W, H = W0.copy(), H0.copy() | |
W2, H2, _ = non_negative_factorization( | |
X_csr, | |
W, | |
H, | |
n_components, | |
init="custom", | |
update_H=True, | |
solver="mu", | |
beta_loss=beta_loss, | |
max_iter=n_iter, | |
alpha_W=alpha, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
) | |
assert_allclose(W1, W2, atol=1e-7) | |
assert_allclose(H1, H2, atol=1e-7) | |
# Compare with almost same beta_loss, since some values have a specific | |
# behavior, but the results should be continuous w.r.t beta_loss | |
beta_loss -= 1.0e-5 | |
W, H = W0.copy(), H0.copy() | |
W3, H3, _ = non_negative_factorization( | |
X_csr, | |
W, | |
H, | |
n_components, | |
init="custom", | |
update_H=True, | |
solver="mu", | |
beta_loss=beta_loss, | |
max_iter=n_iter, | |
alpha_W=alpha, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
) | |
assert_allclose(W1, W3, atol=1e-4) | |
assert_allclose(H1, H3, atol=1e-4) | |
def test_nmf_negative_beta_loss(csr_container): | |
# Test that an error is raised if beta_loss < 0 and X contains zeros. | |
# Test that the output has not NaN values when the input contains zeros. | |
n_samples = 6 | |
n_features = 5 | |
n_components = 3 | |
rng = np.random.mtrand.RandomState(42) | |
X = rng.randn(n_samples, n_features) | |
np.clip(X, 0, None, out=X) | |
X_csr = csr_container(X) | |
def _assert_nmf_no_nan(X, beta_loss): | |
W, H, _ = non_negative_factorization( | |
X, | |
init="random", | |
n_components=n_components, | |
solver="mu", | |
beta_loss=beta_loss, | |
random_state=0, | |
max_iter=1000, | |
) | |
assert not np.any(np.isnan(W)) | |
assert not np.any(np.isnan(H)) | |
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." | |
for beta_loss in (-0.6, 0.0): | |
with pytest.raises(ValueError, match=msg): | |
_assert_nmf_no_nan(X, beta_loss) | |
_assert_nmf_no_nan(X + 1e-9, beta_loss) | |
for beta_loss in (0.2, 1.0, 1.2, 2.0, 2.5): | |
_assert_nmf_no_nan(X, beta_loss) | |
_assert_nmf_no_nan(X_csr, beta_loss) | |
# TODO(1.6): remove the warning filter | |
def test_minibatch_nmf_negative_beta_loss(beta_loss): | |
"""Check that an error is raised if beta_loss < 0 and X contains zeros.""" | |
rng = np.random.RandomState(0) | |
X = rng.normal(size=(6, 5)) | |
X[X < 0] = 0 | |
nmf = MiniBatchNMF(beta_loss=beta_loss, random_state=0) | |
msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." | |
with pytest.raises(ValueError, match=msg): | |
nmf.fit(X) | |
def test_nmf_regularization(Estimator, solver): | |
# Test the effect of L1 and L2 regularizations | |
n_samples = 6 | |
n_features = 5 | |
n_components = 3 | |
rng = np.random.mtrand.RandomState(42) | |
X = np.abs(rng.randn(n_samples, n_features)) | |
# L1 regularization should increase the number of zeros | |
l1_ratio = 1.0 | |
regul = Estimator( | |
n_components=n_components, | |
alpha_W=0.5, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
**solver, | |
) | |
model = Estimator( | |
n_components=n_components, | |
alpha_W=0.0, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
**solver, | |
) | |
W_regul = regul.fit_transform(X) | |
W_model = model.fit_transform(X) | |
H_regul = regul.components_ | |
H_model = model.components_ | |
eps = np.finfo(np.float64).eps | |
W_regul_n_zeros = W_regul[W_regul <= eps].size | |
W_model_n_zeros = W_model[W_model <= eps].size | |
H_regul_n_zeros = H_regul[H_regul <= eps].size | |
H_model_n_zeros = H_model[H_model <= eps].size | |
assert W_regul_n_zeros > W_model_n_zeros | |
assert H_regul_n_zeros > H_model_n_zeros | |
# L2 regularization should decrease the sum of the squared norm | |
# of the matrices W and H | |
l1_ratio = 0.0 | |
regul = Estimator( | |
n_components=n_components, | |
alpha_W=0.5, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
**solver, | |
) | |
model = Estimator( | |
n_components=n_components, | |
alpha_W=0.0, | |
l1_ratio=l1_ratio, | |
random_state=42, | |
**solver, | |
) | |
W_regul = regul.fit_transform(X) | |
W_model = model.fit_transform(X) | |
H_regul = regul.components_ | |
H_model = model.components_ | |
assert (linalg.norm(W_model)) ** 2.0 + (linalg.norm(H_model)) ** 2.0 > ( | |
linalg.norm(W_regul) | |
) ** 2.0 + (linalg.norm(H_regul)) ** 2.0 | |
def test_nmf_decreasing(solver): | |
# test that the objective function is decreasing at each iteration | |
n_samples = 20 | |
n_features = 15 | |
n_components = 10 | |
alpha = 0.1 | |
l1_ratio = 0.5 | |
tol = 0.0 | |
# initialization | |
rng = np.random.mtrand.RandomState(42) | |
X = rng.randn(n_samples, n_features) | |
np.abs(X, X) | |
W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42) | |
for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5): | |
if solver != "mu" and beta_loss != 2: | |
# not implemented | |
continue | |
W, H = W0.copy(), H0.copy() | |
previous_loss = None | |
for _ in range(30): | |
# one more iteration starting from the previous results | |
W, H, _ = non_negative_factorization( | |
X, | |
W, | |
H, | |
beta_loss=beta_loss, | |
init="custom", | |
n_components=n_components, | |
max_iter=1, | |
alpha_W=alpha, | |
solver=solver, | |
tol=tol, | |
l1_ratio=l1_ratio, | |
verbose=0, | |
random_state=0, | |
update_H=True, | |
) | |
loss = ( | |
nmf._beta_divergence(X, W, H, beta_loss) | |
+ alpha * l1_ratio * n_features * W.sum() | |
+ alpha * l1_ratio * n_samples * H.sum() | |
+ alpha * (1 - l1_ratio) * n_features * (W**2).sum() | |
+ alpha * (1 - l1_ratio) * n_samples * (H**2).sum() | |
) | |
if previous_loss is not None: | |
assert previous_loss > loss | |
previous_loss = loss | |
def test_nmf_underflow(): | |
# Regression test for an underflow issue in _beta_divergence | |
rng = np.random.RandomState(0) | |
n_samples, n_features, n_components = 10, 2, 2 | |
X = np.abs(rng.randn(n_samples, n_features)) * 10 | |
W = np.abs(rng.randn(n_samples, n_components)) * 10 | |
H = np.abs(rng.randn(n_components, n_features)) | |
X[0, 0] = 0 | |
ref = nmf._beta_divergence(X, W, H, beta=1.0) | |
X[0, 0] = 1e-323 | |
res = nmf._beta_divergence(X, W, H, beta=1.0) | |
assert_almost_equal(res, ref) | |
# TODO(1.6): remove the warning filter | |
def test_nmf_dtype_match(Estimator, solver, dtype_in, dtype_out): | |
# Check that NMF preserves dtype (float32 and float64) | |
X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False) | |
np.abs(X, out=X) | |
nmf = Estimator( | |
alpha_W=1.0, | |
alpha_H=1.0, | |
tol=1e-2, | |
random_state=0, | |
**solver, | |
) | |
assert nmf.fit(X).transform(X).dtype == dtype_out | |
assert nmf.fit_transform(X).dtype == dtype_out | |
assert nmf.components_.dtype == dtype_out | |
# TODO(1.6): remove the warning filter | |
def test_nmf_float32_float64_consistency(Estimator, solver): | |
# Check that the result of NMF is the same between float32 and float64 | |
X = np.random.RandomState(0).randn(50, 7) | |
np.abs(X, out=X) | |
nmf32 = Estimator(random_state=0, tol=1e-3, **solver) | |
W32 = nmf32.fit_transform(X.astype(np.float32)) | |
nmf64 = Estimator(random_state=0, tol=1e-3, **solver) | |
W64 = nmf64.fit_transform(X) | |
assert_allclose(W32, W64, atol=1e-5) | |
# TODO(1.6): remove the warning filter | |
def test_nmf_custom_init_dtype_error(Estimator): | |
# Check that an error is raise if custom H and/or W don't have the same | |
# dtype as X. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((20, 15)) | |
H = rng.random_sample((15, 15)).astype(np.float32) | |
W = rng.random_sample((20, 15)) | |
with pytest.raises(TypeError, match="should have the same dtype as X"): | |
Estimator(init="custom").fit(X, H=H, W=W) | |
with pytest.raises(TypeError, match="should have the same dtype as X"): | |
non_negative_factorization(X, H=H, update_H=False) | |
def test_nmf_minibatchnmf_equivalence(beta_loss): | |
# Test that MiniBatchNMF is equivalent to NMF when batch_size = n_samples and | |
# forget_factor 0.0 (stopping criterion put aside) | |
rng = np.random.mtrand.RandomState(42) | |
X = np.abs(rng.randn(48, 5)) | |
nmf = NMF( | |
n_components=5, | |
beta_loss=beta_loss, | |
solver="mu", | |
random_state=0, | |
tol=0, | |
) | |
mbnmf = MiniBatchNMF( | |
n_components=5, | |
beta_loss=beta_loss, | |
random_state=0, | |
tol=0, | |
max_no_improvement=None, | |
batch_size=X.shape[0], | |
forget_factor=0.0, | |
) | |
W = nmf.fit_transform(X) | |
mbW = mbnmf.fit_transform(X) | |
assert_allclose(W, mbW) | |
def test_minibatch_nmf_partial_fit(): | |
# Check fit / partial_fit equivalence. Applicable only with fresh restarts. | |
rng = np.random.mtrand.RandomState(42) | |
X = np.abs(rng.randn(100, 5)) | |
n_components = 5 | |
batch_size = 10 | |
max_iter = 2 | |
mbnmf1 = MiniBatchNMF( | |
n_components=n_components, | |
init="custom", | |
random_state=0, | |
max_iter=max_iter, | |
batch_size=batch_size, | |
tol=0, | |
max_no_improvement=None, | |
fresh_restarts=False, | |
) | |
mbnmf2 = MiniBatchNMF(n_components=n_components, init="custom", random_state=0) | |
# Force the same init of H (W is recomputed anyway) to be able to compare results. | |
W, H = nmf._initialize_nmf( | |
X, n_components=n_components, init="random", random_state=0 | |
) | |
mbnmf1.fit(X, W=W, H=H) | |
for i in range(max_iter): | |
for j in range(batch_size): | |
mbnmf2.partial_fit(X[j : j + batch_size], W=W[:batch_size], H=H) | |
assert mbnmf1.n_steps_ == mbnmf2.n_steps_ | |
assert_allclose(mbnmf1.components_, mbnmf2.components_) | |
def test_feature_names_out(): | |
"""Check feature names out for NMF.""" | |
random_state = np.random.RandomState(0) | |
X = np.abs(random_state.randn(10, 4)) | |
nmf = NMF(n_components=3).fit(X) | |
names = nmf.get_feature_names_out() | |
assert_array_equal([f"nmf{i}" for i in range(3)], names) | |
# TODO(1.6): remove the warning filter | |
def test_minibatch_nmf_verbose(): | |
# Check verbose mode of MiniBatchNMF for better coverage. | |
A = np.random.RandomState(0).random_sample((100, 10)) | |
nmf = MiniBatchNMF(tol=1e-2, random_state=0, verbose=1) | |
old_stdout = sys.stdout | |
sys.stdout = StringIO() | |
try: | |
nmf.fit(A) | |
finally: | |
sys.stdout = old_stdout | |
# TODO(1.5): remove this test | |
def test_NMF_inverse_transform_W_deprecation(): | |
rng = np.random.mtrand.RandomState(42) | |
A = np.abs(rng.randn(6, 5)) | |
est = NMF( | |
n_components=3, | |
init="random", | |
random_state=0, | |
tol=1e-6, | |
) | |
Xt = est.fit_transform(A) | |
with pytest.raises(TypeError, match="Missing required positional argument"): | |
est.inverse_transform() | |
with pytest.raises(ValueError, match="Please provide only"): | |
est.inverse_transform(Xt=Xt, W=Xt) | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter("error") | |
est.inverse_transform(Xt) | |
with pytest.warns(FutureWarning, match="Input argument `W` was renamed to `Xt`"): | |
est.inverse_transform(W=Xt) | |
def test_nmf_n_components_auto(Estimator): | |
# Check that n_components is correctly inferred | |
# from the provided custom initialization. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
W = rng.random_sample((6, 2)) | |
H = rng.random_sample((2, 5)) | |
est = Estimator( | |
n_components="auto", | |
init="custom", | |
random_state=0, | |
tol=1e-6, | |
) | |
est.fit_transform(X, W=W, H=H) | |
assert est._n_components == H.shape[0] | |
def test_nmf_non_negative_factorization_n_components_auto(): | |
# Check that n_components is correctly inferred from the provided | |
# custom initialization. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
W_init = rng.random_sample((6, 2)) | |
H_init = rng.random_sample((2, 5)) | |
W, H, _ = non_negative_factorization( | |
X, W=W_init, H=H_init, init="custom", n_components="auto" | |
) | |
assert H.shape == H_init.shape | |
assert W.shape == W_init.shape | |
# TODO(1.6): remove | |
def test_nmf_n_components_default_value_warning(): | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
H = rng.random_sample((2, 5)) | |
with pytest.warns( | |
FutureWarning, match="The default value of `n_components` will change from" | |
): | |
non_negative_factorization(X, H=H) | |
def test_nmf_n_components_auto_no_h_update(): | |
# Tests that non_negative_factorization does not fail when setting | |
# n_components="auto" also tests that the inferred n_component | |
# value is the right one. | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
H_true = rng.random_sample((2, 5)) | |
W, H, _ = non_negative_factorization( | |
X, H=H_true, n_components="auto", update_H=False | |
) # should not fail | |
assert_allclose(H, H_true) | |
assert W.shape == (X.shape[0], H_true.shape[0]) | |
def test_nmf_w_h_not_used_warning(): | |
# Check that warnings are raised if user provided W and H are not used | |
# and initialization overrides value of W or H | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
W_init = rng.random_sample((6, 2)) | |
H_init = rng.random_sample((2, 5)) | |
with pytest.warns( | |
RuntimeWarning, | |
match="When init!='custom', provided W or H are ignored", | |
): | |
non_negative_factorization(X, H=H_init, update_H=True, n_components="auto") | |
with pytest.warns( | |
RuntimeWarning, | |
match="When init!='custom', provided W or H are ignored", | |
): | |
non_negative_factorization( | |
X, W=W_init, H=H_init, update_H=True, n_components="auto" | |
) | |
with pytest.warns( | |
RuntimeWarning, match="When update_H=False, the provided initial W is not used." | |
): | |
# When update_H is False, W is ignored regardless of init | |
# TODO: use the provided W when init="custom". | |
non_negative_factorization( | |
X, W=W_init, H=H_init, update_H=False, n_components="auto" | |
) | |
def test_nmf_custom_init_shape_error(): | |
# Check that an informative error is raised when custom initialization does not | |
# have the right shape | |
rng = np.random.RandomState(0) | |
X = rng.random_sample((6, 5)) | |
H = rng.random_sample((2, 5)) | |
nmf = NMF(n_components=2, init="custom", random_state=0) | |
with pytest.raises(ValueError, match="Array with wrong first dimension passed"): | |
nmf.fit(X, H=H, W=rng.random_sample((5, 2))) | |
with pytest.raises(ValueError, match="Array with wrong second dimension passed"): | |
nmf.fit(X, H=H, W=rng.random_sample((6, 3))) | |