peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/ensemble
/_base.py
"""Base class for ensemble-based estimators.""" | |
# Authors: Gilles Louppe | |
# License: BSD 3 clause | |
from abc import ABCMeta, abstractmethod | |
from typing import List | |
import numpy as np | |
from joblib import effective_n_jobs | |
from ..base import BaseEstimator, MetaEstimatorMixin, clone, is_classifier, is_regressor | |
from ..utils import Bunch, _print_elapsed_time, check_random_state | |
from ..utils._tags import _safe_tags | |
from ..utils.metaestimators import _BaseComposition | |
def _fit_single_estimator( | |
estimator, X, y, sample_weight=None, message_clsname=None, message=None | |
): | |
"""Private function used to fit an estimator within a job.""" | |
if sample_weight is not None: | |
try: | |
with _print_elapsed_time(message_clsname, message): | |
estimator.fit(X, y, sample_weight=sample_weight) | |
except TypeError as exc: | |
if "unexpected keyword argument 'sample_weight'" in str(exc): | |
raise TypeError( | |
"Underlying estimator {} does not support sample weights.".format( | |
estimator.__class__.__name__ | |
) | |
) from exc | |
raise | |
else: | |
with _print_elapsed_time(message_clsname, message): | |
estimator.fit(X, y) | |
return estimator | |
def _set_random_states(estimator, random_state=None): | |
"""Set fixed random_state parameters for an estimator. | |
Finds all parameters ending ``random_state`` and sets them to integers | |
derived from ``random_state``. | |
Parameters | |
---------- | |
estimator : estimator supporting get/set_params | |
Estimator with potential randomness managed by random_state | |
parameters. | |
random_state : int, RandomState instance or None, default=None | |
Pseudo-random number generator to control the generation of the random | |
integers. Pass an int for reproducible output across multiple function | |
calls. | |
See :term:`Glossary <random_state>`. | |
Notes | |
----- | |
This does not necessarily set *all* ``random_state`` attributes that | |
control an estimator's randomness, only those accessible through | |
``estimator.get_params()``. ``random_state``s not controlled include | |
those belonging to: | |
* cross-validation splitters | |
* ``scipy.stats`` rvs | |
""" | |
random_state = check_random_state(random_state) | |
to_set = {} | |
for key in sorted(estimator.get_params(deep=True)): | |
if key == "random_state" or key.endswith("__random_state"): | |
to_set[key] = random_state.randint(np.iinfo(np.int32).max) | |
if to_set: | |
estimator.set_params(**to_set) | |
class BaseEnsemble(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta): | |
"""Base class for all ensemble classes. | |
Warning: This class should not be used directly. Use derived classes | |
instead. | |
Parameters | |
---------- | |
estimator : object | |
The base estimator from which the ensemble is built. | |
n_estimators : int, default=10 | |
The number of estimators in the ensemble. | |
estimator_params : list of str, default=tuple() | |
The list of attributes to use as parameters when instantiating a | |
new base estimator. If none are given, default parameters are used. | |
Attributes | |
---------- | |
estimator_ : estimator | |
The base estimator from which the ensemble is grown. | |
estimators_ : list of estimators | |
The collection of fitted base estimators. | |
""" | |
# overwrite _required_parameters from MetaEstimatorMixin | |
_required_parameters: List[str] = [] | |
def __init__( | |
self, | |
estimator=None, | |
*, | |
n_estimators=10, | |
estimator_params=tuple(), | |
): | |
# Set parameters | |
self.estimator = estimator | |
self.n_estimators = n_estimators | |
self.estimator_params = estimator_params | |
# Don't instantiate estimators now! Parameters of estimator might | |
# still change. Eg., when grid-searching with the nested object syntax. | |
# self.estimators_ needs to be filled by the derived classes in fit. | |
def _validate_estimator(self, default=None): | |
"""Check the base estimator. | |
Sets the `estimator_` attributes. | |
""" | |
if self.estimator is not None: | |
self.estimator_ = self.estimator | |
else: | |
self.estimator_ = default | |
def _make_estimator(self, append=True, random_state=None): | |
"""Make and configure a copy of the `estimator_` attribute. | |
Warning: This method should be used to properly instantiate new | |
sub-estimators. | |
""" | |
estimator = clone(self.estimator_) | |
estimator.set_params(**{p: getattr(self, p) for p in self.estimator_params}) | |
if random_state is not None: | |
_set_random_states(estimator, random_state) | |
if append: | |
self.estimators_.append(estimator) | |
return estimator | |
def __len__(self): | |
"""Return the number of estimators in the ensemble.""" | |
return len(self.estimators_) | |
def __getitem__(self, index): | |
"""Return the index'th estimator in the ensemble.""" | |
return self.estimators_[index] | |
def __iter__(self): | |
"""Return iterator over estimators in the ensemble.""" | |
return iter(self.estimators_) | |
def _partition_estimators(n_estimators, n_jobs): | |
"""Private function used to partition estimators between jobs.""" | |
# Compute the number of jobs | |
n_jobs = min(effective_n_jobs(n_jobs), n_estimators) | |
# Partition estimators between jobs | |
n_estimators_per_job = np.full(n_jobs, n_estimators // n_jobs, dtype=int) | |
n_estimators_per_job[: n_estimators % n_jobs] += 1 | |
starts = np.cumsum(n_estimators_per_job) | |
return n_jobs, n_estimators_per_job.tolist(), [0] + starts.tolist() | |
class _BaseHeterogeneousEnsemble( | |
MetaEstimatorMixin, _BaseComposition, metaclass=ABCMeta | |
): | |
"""Base class for heterogeneous ensemble of learners. | |
Parameters | |
---------- | |
estimators : list of (str, estimator) tuples | |
The ensemble of estimators to use in the ensemble. Each element of the | |
list is defined as a tuple of string (i.e. name of the estimator) and | |
an estimator instance. An estimator can be set to `'drop'` using | |
`set_params`. | |
Attributes | |
---------- | |
estimators_ : list of estimators | |
The elements of the estimators parameter, having been fitted on the | |
training data. If an estimator has been set to `'drop'`, it will not | |
appear in `estimators_`. | |
""" | |
_required_parameters = ["estimators"] | |
def named_estimators(self): | |
"""Dictionary to access any fitted sub-estimators by name. | |
Returns | |
------- | |
:class:`~sklearn.utils.Bunch` | |
""" | |
return Bunch(**dict(self.estimators)) | |
def __init__(self, estimators): | |
self.estimators = estimators | |
def _validate_estimators(self): | |
if len(self.estimators) == 0: | |
raise ValueError( | |
"Invalid 'estimators' attribute, 'estimators' should be a " | |
"non-empty list of (string, estimator) tuples." | |
) | |
names, estimators = zip(*self.estimators) | |
# defined by MetaEstimatorMixin | |
self._validate_names(names) | |
has_estimator = any(est != "drop" for est in estimators) | |
if not has_estimator: | |
raise ValueError( | |
"All estimators are dropped. At least one is required " | |
"to be an estimator." | |
) | |
is_estimator_type = is_classifier if is_classifier(self) else is_regressor | |
for est in estimators: | |
if est != "drop" and not is_estimator_type(est): | |
raise ValueError( | |
"The estimator {} should be a {}.".format( | |
est.__class__.__name__, is_estimator_type.__name__[3:] | |
) | |
) | |
return names, estimators | |
def set_params(self, **params): | |
""" | |
Set the parameters of an estimator from the ensemble. | |
Valid parameter keys can be listed with `get_params()`. Note that you | |
can directly set the parameters of the estimators contained in | |
`estimators`. | |
Parameters | |
---------- | |
**params : keyword arguments | |
Specific parameters using e.g. | |
`set_params(parameter_name=new_value)`. In addition, to setting the | |
parameters of the estimator, the individual estimator of the | |
estimators can also be set, or can be removed by setting them to | |
'drop'. | |
Returns | |
------- | |
self : object | |
Estimator instance. | |
""" | |
super()._set_params("estimators", **params) | |
return self | |
def get_params(self, deep=True): | |
""" | |
Get the parameters of an estimator from the ensemble. | |
Returns the parameters given in the constructor as well as the | |
estimators contained within the `estimators` parameter. | |
Parameters | |
---------- | |
deep : bool, default=True | |
Setting it to True gets the various estimators and the parameters | |
of the estimators as well. | |
Returns | |
------- | |
params : dict | |
Parameter and estimator names mapped to their values or parameter | |
names mapped to their values. | |
""" | |
return super()._get_params("estimators", deep=deep) | |
def _more_tags(self): | |
try: | |
allow_nan = all( | |
_safe_tags(est[1])["allow_nan"] if est[1] != "drop" else True | |
for est in self.estimators | |
) | |
except Exception: | |
# If `estimators` does not comply with our API (list of tuples) then it will | |
# fail. In this case, we assume that `allow_nan` is False but the parameter | |
# validation will raise an error during `fit`. | |
allow_nan = False | |
return {"preserves_dtype": [], "allow_nan": allow_nan} | |