peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/impute
/_knn.py
# Authors: Ashim Bhattarai <[email protected]> | |
# Thomas J Fan <[email protected]> | |
# License: BSD 3 clause | |
from numbers import Integral | |
import numpy as np | |
from ..base import _fit_context | |
from ..metrics import pairwise_distances_chunked | |
from ..metrics.pairwise import _NAN_METRICS | |
from ..neighbors._base import _get_weights | |
from ..utils import is_scalar_nan | |
from ..utils._mask import _get_mask | |
from ..utils._param_validation import Hidden, Interval, StrOptions | |
from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted | |
from ._base import _BaseImputer | |
class KNNImputer(_BaseImputer): | |
"""Imputation for completing missing values using k-Nearest Neighbors. | |
Each sample's missing values are imputed using the mean value from | |
`n_neighbors` nearest neighbors found in the training set. Two samples are | |
close if the features that neither is missing are close. | |
Read more in the :ref:`User Guide <knnimpute>`. | |
.. versionadded:: 0.22 | |
Parameters | |
---------- | |
missing_values : int, float, str, np.nan or None, default=np.nan | |
The placeholder for the missing values. All occurrences of | |
`missing_values` will be imputed. For pandas' dataframes with | |
nullable integer dtypes with missing values, `missing_values` | |
should be set to np.nan, since `pd.NA` will be converted to np.nan. | |
n_neighbors : int, default=5 | |
Number of neighboring samples to use for imputation. | |
weights : {'uniform', 'distance'} or callable, default='uniform' | |
Weight function used in prediction. Possible values: | |
- 'uniform' : uniform weights. All points in each neighborhood are | |
weighted equally. | |
- 'distance' : weight points by the inverse of their distance. | |
in this case, closer neighbors of a query point will have a | |
greater influence than neighbors which are further away. | |
- callable : a user-defined function which accepts an | |
array of distances, and returns an array of the same shape | |
containing the weights. | |
metric : {'nan_euclidean'} or callable, default='nan_euclidean' | |
Distance metric for searching neighbors. Possible values: | |
- 'nan_euclidean' | |
- callable : a user-defined function which conforms to the definition | |
of ``_pairwise_callable(X, Y, metric, **kwds)``. The function | |
accepts two arrays, X and Y, and a `missing_values` keyword in | |
`kwds` and returns a scalar distance value. | |
copy : bool, default=True | |
If True, a copy of X will be created. If False, imputation will | |
be done in-place whenever possible. | |
add_indicator : bool, default=False | |
If True, a :class:`MissingIndicator` transform will stack onto the | |
output of the imputer's transform. This allows a predictive estimator | |
to account for missingness despite imputation. If a feature has no | |
missing values at fit/train time, the feature won't appear on the | |
missing indicator even if there are missing values at transform/test | |
time. | |
keep_empty_features : bool, default=False | |
If True, features that consist exclusively of missing values when | |
`fit` is called are returned in results when `transform` is called. | |
The imputed value is always `0`. | |
.. versionadded:: 1.2 | |
Attributes | |
---------- | |
indicator_ : :class:`~sklearn.impute.MissingIndicator` | |
Indicator used to add binary indicators for missing values. | |
``None`` if add_indicator is False. | |
n_features_in_ : int | |
Number of features seen during :term:`fit`. | |
.. versionadded:: 0.24 | |
feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
Names of features seen during :term:`fit`. Defined only when `X` | |
has feature names that are all strings. | |
.. versionadded:: 1.0 | |
See Also | |
-------- | |
SimpleImputer : Univariate imputer for completing missing values | |
with simple strategies. | |
IterativeImputer : Multivariate imputer that estimates values to impute for | |
each feature with missing values from all the others. | |
References | |
---------- | |
* `Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor | |
Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, Missing | |
value estimation methods for DNA microarrays, BIOINFORMATICS Vol. 17 | |
no. 6, 2001 Pages 520-525. | |
<https://academic.oup.com/bioinformatics/article/17/6/520/272365>`_ | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from sklearn.impute import KNNImputer | |
>>> X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]] | |
>>> imputer = KNNImputer(n_neighbors=2) | |
>>> imputer.fit_transform(X) | |
array([[1. , 2. , 4. ], | |
[3. , 4. , 3. ], | |
[5.5, 6. , 5. ], | |
[8. , 8. , 7. ]]) | |
For a more detailed example see | |
:ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`. | |
""" | |
_parameter_constraints: dict = { | |
**_BaseImputer._parameter_constraints, | |
"n_neighbors": [Interval(Integral, 1, None, closed="left")], | |
"weights": [StrOptions({"uniform", "distance"}), callable, Hidden(None)], | |
"metric": [StrOptions(set(_NAN_METRICS)), callable], | |
"copy": ["boolean"], | |
} | |
def __init__( | |
self, | |
*, | |
missing_values=np.nan, | |
n_neighbors=5, | |
weights="uniform", | |
metric="nan_euclidean", | |
copy=True, | |
add_indicator=False, | |
keep_empty_features=False, | |
): | |
super().__init__( | |
missing_values=missing_values, | |
add_indicator=add_indicator, | |
keep_empty_features=keep_empty_features, | |
) | |
self.n_neighbors = n_neighbors | |
self.weights = weights | |
self.metric = metric | |
self.copy = copy | |
def _calc_impute(self, dist_pot_donors, n_neighbors, fit_X_col, mask_fit_X_col): | |
"""Helper function to impute a single column. | |
Parameters | |
---------- | |
dist_pot_donors : ndarray of shape (n_receivers, n_potential_donors) | |
Distance matrix between the receivers and potential donors from | |
training set. There must be at least one non-nan distance between | |
a receiver and a potential donor. | |
n_neighbors : int | |
Number of neighbors to consider. | |
fit_X_col : ndarray of shape (n_potential_donors,) | |
Column of potential donors from training set. | |
mask_fit_X_col : ndarray of shape (n_potential_donors,) | |
Missing mask for fit_X_col. | |
Returns | |
------- | |
imputed_values: ndarray of shape (n_receivers,) | |
Imputed values for receiver. | |
""" | |
# Get donors | |
donors_idx = np.argpartition(dist_pot_donors, n_neighbors - 1, axis=1)[ | |
:, :n_neighbors | |
] | |
# Get weight matrix from distance matrix | |
donors_dist = dist_pot_donors[ | |
np.arange(donors_idx.shape[0])[:, None], donors_idx | |
] | |
weight_matrix = _get_weights(donors_dist, self.weights) | |
# fill nans with zeros | |
if weight_matrix is not None: | |
weight_matrix[np.isnan(weight_matrix)] = 0.0 | |
# Retrieve donor values and calculate kNN average | |
donors = fit_X_col.take(donors_idx) | |
donors_mask = mask_fit_X_col.take(donors_idx) | |
donors = np.ma.array(donors, mask=donors_mask) | |
return np.ma.average(donors, axis=1, weights=weight_matrix).data | |
def fit(self, X, y=None): | |
"""Fit the imputer on X. | |
Parameters | |
---------- | |
X : array-like shape of (n_samples, n_features) | |
Input data, where `n_samples` is the number of samples and | |
`n_features` is the number of features. | |
y : Ignored | |
Not used, present here for API consistency by convention. | |
Returns | |
------- | |
self : object | |
The fitted `KNNImputer` class instance. | |
""" | |
# Check data integrity and calling arguments | |
if not is_scalar_nan(self.missing_values): | |
force_all_finite = True | |
else: | |
force_all_finite = "allow-nan" | |
X = self._validate_data( | |
X, | |
accept_sparse=False, | |
dtype=FLOAT_DTYPES, | |
force_all_finite=force_all_finite, | |
copy=self.copy, | |
) | |
self._fit_X = X | |
self._mask_fit_X = _get_mask(self._fit_X, self.missing_values) | |
self._valid_mask = ~np.all(self._mask_fit_X, axis=0) | |
super()._fit_indicator(self._mask_fit_X) | |
return self | |
def transform(self, X): | |
"""Impute all missing values in X. | |
Parameters | |
---------- | |
X : array-like of shape (n_samples, n_features) | |
The input data to complete. | |
Returns | |
------- | |
X : array-like of shape (n_samples, n_output_features) | |
The imputed dataset. `n_output_features` is the number of features | |
that is not always missing during `fit`. | |
""" | |
check_is_fitted(self) | |
if not is_scalar_nan(self.missing_values): | |
force_all_finite = True | |
else: | |
force_all_finite = "allow-nan" | |
X = self._validate_data( | |
X, | |
accept_sparse=False, | |
dtype=FLOAT_DTYPES, | |
force_all_finite=force_all_finite, | |
copy=self.copy, | |
reset=False, | |
) | |
mask = _get_mask(X, self.missing_values) | |
mask_fit_X = self._mask_fit_X | |
valid_mask = self._valid_mask | |
X_indicator = super()._transform_indicator(mask) | |
# Removes columns where the training data is all nan | |
if not np.any(mask): | |
# No missing values in X | |
if self.keep_empty_features: | |
Xc = X | |
Xc[:, ~valid_mask] = 0 | |
else: | |
Xc = X[:, valid_mask] | |
# Even if there are no missing values in X, we still concatenate Xc | |
# with the missing value indicator matrix, X_indicator. | |
# This is to ensure that the output maintains consistency in terms | |
# of columns, regardless of whether missing values exist in X or not. | |
return super()._concatenate_indicator(Xc, X_indicator) | |
row_missing_idx = np.flatnonzero(mask.any(axis=1)) | |
non_missing_fix_X = np.logical_not(mask_fit_X) | |
# Maps from indices from X to indices in dist matrix | |
dist_idx_map = np.zeros(X.shape[0], dtype=int) | |
dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0]) | |
def process_chunk(dist_chunk, start): | |
row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)] | |
# Find and impute missing by column | |
for col in range(X.shape[1]): | |
if not valid_mask[col]: | |
# column was all missing during training | |
continue | |
col_mask = mask[row_missing_chunk, col] | |
if not np.any(col_mask): | |
# column has no missing values | |
continue | |
(potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col]) | |
# receivers_idx are indices in X | |
receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)] | |
# distances for samples that needed imputation for column | |
dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][ | |
:, potential_donors_idx | |
] | |
# receivers with all nan distances impute with mean | |
all_nan_dist_mask = np.isnan(dist_subset).all(axis=1) | |
all_nan_receivers_idx = receivers_idx[all_nan_dist_mask] | |
if all_nan_receivers_idx.size: | |
col_mean = np.ma.array( | |
self._fit_X[:, col], mask=mask_fit_X[:, col] | |
).mean() | |
X[all_nan_receivers_idx, col] = col_mean | |
if len(all_nan_receivers_idx) == len(receivers_idx): | |
# all receivers imputed with mean | |
continue | |
# receivers with at least one defined distance | |
receivers_idx = receivers_idx[~all_nan_dist_mask] | |
dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][ | |
:, potential_donors_idx | |
] | |
n_neighbors = min(self.n_neighbors, len(potential_donors_idx)) | |
value = self._calc_impute( | |
dist_subset, | |
n_neighbors, | |
self._fit_X[potential_donors_idx, col], | |
mask_fit_X[potential_donors_idx, col], | |
) | |
X[receivers_idx, col] = value | |
# process in fixed-memory chunks | |
gen = pairwise_distances_chunked( | |
X[row_missing_idx, :], | |
self._fit_X, | |
metric=self.metric, | |
missing_values=self.missing_values, | |
force_all_finite=force_all_finite, | |
reduce_func=process_chunk, | |
) | |
for chunk in gen: | |
# process_chunk modifies X in place. No return value. | |
pass | |
if self.keep_empty_features: | |
Xc = X | |
Xc[:, ~valid_mask] = 0 | |
else: | |
Xc = X[:, valid_mask] | |
return super()._concatenate_indicator(Xc, X_indicator) | |
def get_feature_names_out(self, input_features=None): | |
"""Get output feature names for transformation. | |
Parameters | |
---------- | |
input_features : array-like of str or None, default=None | |
Input features. | |
- If `input_features` is `None`, then `feature_names_in_` is | |
used as feature names in. If `feature_names_in_` is not defined, | |
then the following input feature names are generated: | |
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`. | |
- If `input_features` is an array-like, then `input_features` must | |
match `feature_names_in_` if `feature_names_in_` is defined. | |
Returns | |
------- | |
feature_names_out : ndarray of str objects | |
Transformed feature names. | |
""" | |
check_is_fitted(self, "n_features_in_") | |
input_features = _check_feature_names_in(self, input_features) | |
names = input_features[self._valid_mask] | |
return self._concatenate_indicator_feature_names_out(names, input_features) | |