peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_extmath.py
# Authors: Olivier Grisel <[email protected]> | |
# Mathieu Blondel <[email protected]> | |
# Denis Engemann <[email protected]> | |
# | |
# License: BSD 3 clause | |
import numpy as np | |
import pytest | |
from scipy import linalg, sparse | |
from scipy.linalg import eigh | |
from scipy.sparse.linalg import eigsh | |
from scipy.special import expit | |
from sklearn.datasets import make_low_rank_matrix, make_sparse_spd_matrix | |
from sklearn.utils import gen_batches | |
from sklearn.utils._arpack import _init_arpack_v0 | |
from sklearn.utils._testing import ( | |
assert_allclose, | |
assert_allclose_dense_sparse, | |
assert_almost_equal, | |
assert_array_almost_equal, | |
assert_array_equal, | |
skip_if_32bit, | |
) | |
from sklearn.utils.extmath import ( | |
_deterministic_vector_sign_flip, | |
_incremental_mean_and_var, | |
_randomized_eigsh, | |
_safe_accumulator_op, | |
cartesian, | |
density, | |
log_logistic, | |
randomized_svd, | |
row_norms, | |
safe_sparse_dot, | |
softmax, | |
stable_cumsum, | |
svd_flip, | |
weighted_mode, | |
) | |
from sklearn.utils.fixes import ( | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
DOK_CONTAINERS, | |
LIL_CONTAINERS, | |
_mode, | |
) | |
def test_density(sparse_container): | |
rng = np.random.RandomState(0) | |
X = rng.randint(10, size=(10, 5)) | |
X[1, 2] = 0 | |
X[5, 3] = 0 | |
assert density(sparse_container(X)) == density(X) | |
def test_uniform_weights(): | |
# with uniform weights, results should be identical to stats.mode | |
rng = np.random.RandomState(0) | |
x = rng.randint(10, size=(10, 5)) | |
weights = np.ones(x.shape) | |
for axis in (None, 0, 1): | |
mode, score = _mode(x, axis) | |
mode2, score2 = weighted_mode(x, weights, axis=axis) | |
assert_array_equal(mode, mode2) | |
assert_array_equal(score, score2) | |
def test_random_weights(): | |
# set this up so that each row should have a weighted mode of 6, | |
# with a score that is easily reproduced | |
mode_result = 6 | |
rng = np.random.RandomState(0) | |
x = rng.randint(mode_result, size=(100, 10)) | |
w = rng.random_sample(x.shape) | |
x[:, :5] = mode_result | |
w[:, :5] += 1 | |
mode, score = weighted_mode(x, w, axis=1) | |
assert_array_equal(mode, mode_result) | |
assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) | |
def test_randomized_svd_low_rank_all_dtypes(dtype): | |
# Check that extmath.randomized_svd is consistent with linalg.svd | |
n_samples = 100 | |
n_features = 500 | |
rank = 5 | |
k = 10 | |
decimal = 5 if dtype == np.float32 else 7 | |
dtype = np.dtype(dtype) | |
# generate a matrix X of approximate effective rank `rank` and no noise | |
# component (very structured signal): | |
X = make_low_rank_matrix( | |
n_samples=n_samples, | |
n_features=n_features, | |
effective_rank=rank, | |
tail_strength=0.0, | |
random_state=0, | |
).astype(dtype, copy=False) | |
assert X.shape == (n_samples, n_features) | |
# compute the singular values of X using the slow exact method | |
U, s, Vt = linalg.svd(X, full_matrices=False) | |
# Convert the singular values to the specific dtype | |
U = U.astype(dtype, copy=False) | |
s = s.astype(dtype, copy=False) | |
Vt = Vt.astype(dtype, copy=False) | |
for normalizer in ["auto", "LU", "QR"]: # 'none' would not be stable | |
# compute the singular values of X using the fast approximate method | |
Ua, sa, Va = randomized_svd( | |
X, k, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
# If the input dtype is float, then the output dtype is float of the | |
# same bit size (f32 is not upcast to f64) | |
# But if the input dtype is int, the output dtype is float64 | |
if dtype.kind == "f": | |
assert Ua.dtype == dtype | |
assert sa.dtype == dtype | |
assert Va.dtype == dtype | |
else: | |
assert Ua.dtype == np.float64 | |
assert sa.dtype == np.float64 | |
assert Va.dtype == np.float64 | |
assert Ua.shape == (n_samples, k) | |
assert sa.shape == (k,) | |
assert Va.shape == (k, n_features) | |
# ensure that the singular values of both methods are equal up to the | |
# real rank of the matrix | |
assert_almost_equal(s[:k], sa, decimal=decimal) | |
# check the singular vectors too (while not checking the sign) | |
assert_almost_equal( | |
np.dot(U[:, :k], Vt[:k, :]), np.dot(Ua, Va), decimal=decimal | |
) | |
# check the sparse matrix representation | |
for csr_container in CSR_CONTAINERS: | |
X = csr_container(X) | |
# compute the singular values of X using the fast approximate method | |
Ua, sa, Va = randomized_svd( | |
X, k, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
if dtype.kind == "f": | |
assert Ua.dtype == dtype | |
assert sa.dtype == dtype | |
assert Va.dtype == dtype | |
else: | |
assert Ua.dtype.kind == "f" | |
assert sa.dtype.kind == "f" | |
assert Va.dtype.kind == "f" | |
assert_almost_equal(s[:rank], sa[:rank], decimal=decimal) | |
def test_randomized_eigsh(dtype): | |
"""Test that `_randomized_eigsh` returns the appropriate components""" | |
rng = np.random.RandomState(42) | |
X = np.diag(np.array([1.0, -2.0, 0.0, 3.0], dtype=dtype)) | |
# random rotation that preserves the eigenvalues of X | |
rand_rot = np.linalg.qr(rng.normal(size=X.shape))[0] | |
X = rand_rot @ X @ rand_rot.T | |
# with 'module' selection method, the negative eigenvalue shows up | |
eigvals, eigvecs = _randomized_eigsh(X, n_components=2, selection="module") | |
# eigenvalues | |
assert eigvals.shape == (2,) | |
assert_array_almost_equal(eigvals, [3.0, -2.0]) # negative eigenvalue here | |
# eigenvectors | |
assert eigvecs.shape == (4, 2) | |
# with 'value' selection method, the negative eigenvalue does not show up | |
with pytest.raises(NotImplementedError): | |
_randomized_eigsh(X, n_components=2, selection="value") | |
def test_randomized_eigsh_compared_to_others(k): | |
"""Check that `_randomized_eigsh` is similar to other `eigsh` | |
Tests that for a random PSD matrix, `_randomized_eigsh` provides results | |
comparable to LAPACK (scipy.linalg.eigh) and ARPACK | |
(scipy.sparse.linalg.eigsh). | |
Note: some versions of ARPACK do not support k=n_features. | |
""" | |
# make a random PSD matrix | |
n_features = 200 | |
X = make_sparse_spd_matrix(n_features, random_state=0) | |
# compare two versions of randomized | |
# rough and fast | |
eigvals, eigvecs = _randomized_eigsh( | |
X, n_components=k, selection="module", n_iter=25, random_state=0 | |
) | |
# more accurate but slow (TODO find realistic settings here) | |
eigvals_qr, eigvecs_qr = _randomized_eigsh( | |
X, | |
n_components=k, | |
n_iter=25, | |
n_oversamples=20, | |
random_state=0, | |
power_iteration_normalizer="QR", | |
selection="module", | |
) | |
# with LAPACK | |
eigvals_lapack, eigvecs_lapack = eigh( | |
X, subset_by_index=(n_features - k, n_features - 1) | |
) | |
indices = eigvals_lapack.argsort()[::-1] | |
eigvals_lapack = eigvals_lapack[indices] | |
eigvecs_lapack = eigvecs_lapack[:, indices] | |
# -- eigenvalues comparison | |
assert eigvals_lapack.shape == (k,) | |
# comparison precision | |
assert_array_almost_equal(eigvals, eigvals_lapack, decimal=6) | |
assert_array_almost_equal(eigvals_qr, eigvals_lapack, decimal=6) | |
# -- eigenvectors comparison | |
assert eigvecs_lapack.shape == (n_features, k) | |
# flip eigenvectors' sign to enforce deterministic output | |
dummy_vecs = np.zeros_like(eigvecs).T | |
eigvecs, _ = svd_flip(eigvecs, dummy_vecs) | |
eigvecs_qr, _ = svd_flip(eigvecs_qr, dummy_vecs) | |
eigvecs_lapack, _ = svd_flip(eigvecs_lapack, dummy_vecs) | |
assert_array_almost_equal(eigvecs, eigvecs_lapack, decimal=4) | |
assert_array_almost_equal(eigvecs_qr, eigvecs_lapack, decimal=6) | |
# comparison ARPACK ~ LAPACK (some ARPACK implems do not support k=n) | |
if k < n_features: | |
v0 = _init_arpack_v0(n_features, random_state=0) | |
# "LA" largest algebraic <=> selection="value" in randomized_eigsh | |
eigvals_arpack, eigvecs_arpack = eigsh( | |
X, k, which="LA", tol=0, maxiter=None, v0=v0 | |
) | |
indices = eigvals_arpack.argsort()[::-1] | |
# eigenvalues | |
eigvals_arpack = eigvals_arpack[indices] | |
assert_array_almost_equal(eigvals_lapack, eigvals_arpack, decimal=10) | |
# eigenvectors | |
eigvecs_arpack = eigvecs_arpack[:, indices] | |
eigvecs_arpack, _ = svd_flip(eigvecs_arpack, dummy_vecs) | |
assert_array_almost_equal(eigvecs_arpack, eigvecs_lapack, decimal=8) | |
def test_randomized_eigsh_reconst_low_rank(n, rank): | |
"""Check that randomized_eigsh is able to reconstruct a low rank psd matrix | |
Tests that the decomposition provided by `_randomized_eigsh` leads to | |
orthonormal eigenvectors, and that a low rank PSD matrix can be effectively | |
reconstructed with good accuracy using it. | |
""" | |
assert rank < n | |
# create a low rank PSD | |
rng = np.random.RandomState(69) | |
X = rng.randn(n, rank) | |
A = X @ X.T | |
# approximate A with the "right" number of components | |
S, V = _randomized_eigsh(A, n_components=rank, random_state=rng) | |
# orthonormality checks | |
assert_array_almost_equal(np.linalg.norm(V, axis=0), np.ones(S.shape)) | |
assert_array_almost_equal(V.T @ V, np.diag(np.ones(S.shape))) | |
# reconstruction | |
A_reconstruct = V @ np.diag(S) @ V.T | |
# test that the approximation is good | |
assert_array_almost_equal(A_reconstruct, A, decimal=6) | |
def test_row_norms(dtype, csr_container): | |
X = np.random.RandomState(42).randn(100, 100) | |
if dtype is np.float32: | |
precision = 4 | |
else: | |
precision = 5 | |
X = X.astype(dtype, copy=False) | |
sq_norm = (X**2).sum(axis=1) | |
assert_array_almost_equal(sq_norm, row_norms(X, squared=True), precision) | |
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision) | |
for csr_index_dtype in [np.int32, np.int64]: | |
Xcsr = csr_container(X, dtype=dtype) | |
# csr_matrix will use int32 indices by default, | |
# up-casting those to int64 when necessary | |
if csr_index_dtype is np.int64: | |
Xcsr.indptr = Xcsr.indptr.astype(csr_index_dtype, copy=False) | |
Xcsr.indices = Xcsr.indices.astype(csr_index_dtype, copy=False) | |
assert Xcsr.indices.dtype == csr_index_dtype | |
assert Xcsr.indptr.dtype == csr_index_dtype | |
assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), precision) | |
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr), precision) | |
def test_randomized_svd_low_rank_with_noise(): | |
# Check that extmath.randomized_svd can handle noisy matrices | |
n_samples = 100 | |
n_features = 500 | |
rank = 5 | |
k = 10 | |
# generate a matrix X wity structure approximate rank `rank` and an | |
# important noisy component | |
X = make_low_rank_matrix( | |
n_samples=n_samples, | |
n_features=n_features, | |
effective_rank=rank, | |
tail_strength=0.1, | |
random_state=0, | |
) | |
assert X.shape == (n_samples, n_features) | |
# compute the singular values of X using the slow exact method | |
_, s, _ = linalg.svd(X, full_matrices=False) | |
for normalizer in ["auto", "none", "LU", "QR"]: | |
# compute the singular values of X using the fast approximate | |
# method without the iterated power method | |
_, sa, _ = randomized_svd( | |
X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
# the approximation does not tolerate the noise: | |
assert np.abs(s[:k] - sa).max() > 0.01 | |
# compute the singular values of X using the fast approximate | |
# method with iterated power method | |
_, sap, _ = randomized_svd( | |
X, k, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
# the iterated power method is helping getting rid of the noise: | |
assert_almost_equal(s[:k], sap, decimal=3) | |
def test_randomized_svd_infinite_rank(): | |
# Check that extmath.randomized_svd can handle noisy matrices | |
n_samples = 100 | |
n_features = 500 | |
rank = 5 | |
k = 10 | |
# let us try again without 'low_rank component': just regularly but slowly | |
# decreasing singular values: the rank of the data matrix is infinite | |
X = make_low_rank_matrix( | |
n_samples=n_samples, | |
n_features=n_features, | |
effective_rank=rank, | |
tail_strength=1.0, | |
random_state=0, | |
) | |
assert X.shape == (n_samples, n_features) | |
# compute the singular values of X using the slow exact method | |
_, s, _ = linalg.svd(X, full_matrices=False) | |
for normalizer in ["auto", "none", "LU", "QR"]: | |
# compute the singular values of X using the fast approximate method | |
# without the iterated power method | |
_, sa, _ = randomized_svd( | |
X, k, n_iter=0, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
# the approximation does not tolerate the noise: | |
assert np.abs(s[:k] - sa).max() > 0.1 | |
# compute the singular values of X using the fast approximate method | |
# with iterated power method | |
_, sap, _ = randomized_svd( | |
X, k, n_iter=5, power_iteration_normalizer=normalizer, random_state=0 | |
) | |
# the iterated power method is still managing to get most of the | |
# structure at the requested rank | |
assert_almost_equal(s[:k], sap, decimal=3) | |
def test_randomized_svd_transpose_consistency(): | |
# Check that transposing the design matrix has limited impact | |
n_samples = 100 | |
n_features = 500 | |
rank = 4 | |
k = 10 | |
X = make_low_rank_matrix( | |
n_samples=n_samples, | |
n_features=n_features, | |
effective_rank=rank, | |
tail_strength=0.5, | |
random_state=0, | |
) | |
assert X.shape == (n_samples, n_features) | |
U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) | |
U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) | |
U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose="auto", random_state=0) | |
U4, s4, V4 = linalg.svd(X, full_matrices=False) | |
assert_almost_equal(s1, s4[:k], decimal=3) | |
assert_almost_equal(s2, s4[:k], decimal=3) | |
assert_almost_equal(s3, s4[:k], decimal=3) | |
assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) | |
assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) | |
# in this case 'auto' is equivalent to transpose | |
assert_almost_equal(s2, s3) | |
def test_randomized_svd_power_iteration_normalizer(): | |
# randomized_svd with power_iteration_normalized='none' diverges for | |
# large number of power iterations on this dataset | |
rng = np.random.RandomState(42) | |
X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng) | |
X += 3 * rng.randint(0, 2, size=X.shape) | |
n_components = 50 | |
# Check that it diverges with many (non-normalized) power iterations | |
U, s, Vt = randomized_svd( | |
X, n_components, n_iter=2, power_iteration_normalizer="none", random_state=0 | |
) | |
A = X - U.dot(np.diag(s).dot(Vt)) | |
error_2 = linalg.norm(A, ord="fro") | |
U, s, Vt = randomized_svd( | |
X, n_components, n_iter=20, power_iteration_normalizer="none", random_state=0 | |
) | |
A = X - U.dot(np.diag(s).dot(Vt)) | |
error_20 = linalg.norm(A, ord="fro") | |
assert np.abs(error_2 - error_20) > 100 | |
for normalizer in ["LU", "QR", "auto"]: | |
U, s, Vt = randomized_svd( | |
X, | |
n_components, | |
n_iter=2, | |
power_iteration_normalizer=normalizer, | |
random_state=0, | |
) | |
A = X - U.dot(np.diag(s).dot(Vt)) | |
error_2 = linalg.norm(A, ord="fro") | |
for i in [5, 10, 50]: | |
U, s, Vt = randomized_svd( | |
X, | |
n_components, | |
n_iter=i, | |
power_iteration_normalizer=normalizer, | |
random_state=0, | |
) | |
A = X - U.dot(np.diag(s).dot(Vt)) | |
error = linalg.norm(A, ord="fro") | |
assert 15 > np.abs(error_2 - error) | |
def test_randomized_svd_sparse_warnings(sparse_container): | |
# randomized_svd throws a warning for lil and dok matrix | |
rng = np.random.RandomState(42) | |
X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng) | |
n_components = 5 | |
X = sparse_container(X) | |
warn_msg = ( | |
"Calculating SVD of a {} is expensive. csr_matrix is more efficient.".format( | |
sparse_container.__name__ | |
) | |
) | |
with pytest.warns(sparse.SparseEfficiencyWarning, match=warn_msg): | |
randomized_svd(X, n_components, n_iter=1, power_iteration_normalizer="none") | |
def test_svd_flip(): | |
# Check that svd_flip works in both situations, and reconstructs input. | |
rs = np.random.RandomState(1999) | |
n_samples = 20 | |
n_features = 10 | |
X = rs.randn(n_samples, n_features) | |
# Check matrix reconstruction | |
U, S, Vt = linalg.svd(X, full_matrices=False) | |
U1, V1 = svd_flip(U, Vt, u_based_decision=False) | |
assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) | |
# Check transposed matrix reconstruction | |
XT = X.T | |
U, S, Vt = linalg.svd(XT, full_matrices=False) | |
U2, V2 = svd_flip(U, Vt, u_based_decision=True) | |
assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) | |
# Check that different flip methods are equivalent under reconstruction | |
U_flip1, V_flip1 = svd_flip(U, Vt, u_based_decision=True) | |
assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) | |
U_flip2, V_flip2 = svd_flip(U, Vt, u_based_decision=False) | |
assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) | |
def test_svd_flip_max_abs_cols(n_samples, n_features, global_random_seed): | |
rs = np.random.RandomState(global_random_seed) | |
X = rs.randn(n_samples, n_features) | |
U, _, Vt = linalg.svd(X, full_matrices=False) | |
U1, _ = svd_flip(U, Vt, u_based_decision=True) | |
max_abs_U1_row_idx_for_col = np.argmax(np.abs(U1), axis=0) | |
assert (U1[max_abs_U1_row_idx_for_col, np.arange(U1.shape[1])] >= 0).all() | |
_, V2 = svd_flip(U, Vt, u_based_decision=False) | |
max_abs_V2_col_idx_for_row = np.argmax(np.abs(V2), axis=1) | |
assert (V2[np.arange(V2.shape[0]), max_abs_V2_col_idx_for_row] >= 0).all() | |
def test_randomized_svd_sign_flip(): | |
a = np.array([[2.0, 0.0], [0.0, 1.0]]) | |
u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) | |
for seed in range(10): | |
u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) | |
assert_almost_equal(u1, u2) | |
assert_almost_equal(v1, v2) | |
assert_almost_equal(np.dot(u2 * s2, v2), a) | |
assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) | |
assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) | |
def test_randomized_svd_sign_flip_with_transpose(): | |
# Check if the randomized_svd sign flipping is always done based on u | |
# irrespective of transpose. | |
# See https://github.com/scikit-learn/scikit-learn/issues/5608 | |
# for more details. | |
def max_loading_is_positive(u, v): | |
""" | |
returns bool tuple indicating if the values maximising np.abs | |
are positive across all rows for u and across all columns for v. | |
""" | |
u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all() | |
v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all() | |
return u_based, v_based | |
mat = np.arange(10 * 8).reshape(10, -1) | |
# Without transpose | |
u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True, random_state=0) | |
u_based, v_based = max_loading_is_positive(u_flipped, v_flipped) | |
assert u_based | |
assert not v_based | |
# With transpose | |
u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd( | |
mat, 3, flip_sign=True, transpose=True, random_state=0 | |
) | |
u_based, v_based = max_loading_is_positive( | |
u_flipped_with_transpose, v_flipped_with_transpose | |
) | |
assert u_based | |
assert not v_based | |
def test_randomized_svd_lapack_driver(n, m, k, seed): | |
# Check that different SVD drivers provide consistent results | |
# Matrix being compressed | |
rng = np.random.RandomState(seed) | |
X = rng.rand(n, m) | |
# Number of components | |
u1, s1, vt1 = randomized_svd(X, k, svd_lapack_driver="gesdd", random_state=0) | |
u2, s2, vt2 = randomized_svd(X, k, svd_lapack_driver="gesvd", random_state=0) | |
# Check shape and contents | |
assert u1.shape == u2.shape | |
assert_allclose(u1, u2, atol=0, rtol=1e-3) | |
assert s1.shape == s2.shape | |
assert_allclose(s1, s2, atol=0, rtol=1e-3) | |
assert vt1.shape == vt2.shape | |
assert_allclose(vt1, vt2, atol=0, rtol=1e-3) | |
def test_cartesian(): | |
# Check if cartesian product delivers the right results | |
axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) | |
true_out = np.array( | |
[ | |
[1, 4, 6], | |
[1, 4, 7], | |
[1, 5, 6], | |
[1, 5, 7], | |
[2, 4, 6], | |
[2, 4, 7], | |
[2, 5, 6], | |
[2, 5, 7], | |
[3, 4, 6], | |
[3, 4, 7], | |
[3, 5, 6], | |
[3, 5, 7], | |
] | |
) | |
out = cartesian(axes) | |
assert_array_equal(true_out, out) | |
# check single axis | |
x = np.arange(3) | |
assert_array_equal(x[:, np.newaxis], cartesian((x,))) | |
def test_cartesian_mix_types(arrays, output_dtype): | |
"""Check that the cartesian product works with mixed types.""" | |
output = cartesian(arrays) | |
assert output.dtype == output_dtype | |
# TODO(1.6): remove this test | |
def test_logistic_sigmoid(): | |
# Check correctness and robustness of logistic sigmoid implementation | |
def naive_log_logistic(x): | |
return np.log(expit(x)) | |
x = np.linspace(-2, 2, 50) | |
warn_msg = "`log_logistic` is deprecated and will be removed" | |
with pytest.warns(FutureWarning, match=warn_msg): | |
assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) | |
extreme_x = np.array([-100.0, 100.0]) | |
with pytest.warns(FutureWarning, match=warn_msg): | |
assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) | |
def rng(): | |
return np.random.RandomState(42) | |
def test_incremental_weighted_mean_and_variance_simple(rng, dtype): | |
mult = 10 | |
X = rng.rand(1000, 20).astype(dtype) * mult | |
sample_weight = rng.rand(X.shape[0]) * mult | |
mean, var, _ = _incremental_mean_and_var(X, 0, 0, 0, sample_weight=sample_weight) | |
expected_mean = np.average(X, weights=sample_weight, axis=0) | |
expected_var = ( | |
np.average(X**2, weights=sample_weight, axis=0) - expected_mean**2 | |
) | |
assert_almost_equal(mean, expected_mean) | |
assert_almost_equal(var, expected_var) | |
def test_incremental_weighted_mean_and_variance( | |
mean, var, weight_loc, weight_scale, rng | |
): | |
# Testing of correctness and numerical stability | |
def _assert(X, sample_weight, expected_mean, expected_var): | |
n = X.shape[0] | |
for chunk_size in [1, n // 10 + 1, n // 4 + 1, n // 2 + 1, n]: | |
last_mean, last_weight_sum, last_var = 0, 0, 0 | |
for batch in gen_batches(n, chunk_size): | |
last_mean, last_var, last_weight_sum = _incremental_mean_and_var( | |
X[batch], | |
last_mean, | |
last_var, | |
last_weight_sum, | |
sample_weight=sample_weight[batch], | |
) | |
assert_allclose(last_mean, expected_mean) | |
assert_allclose(last_var, expected_var, atol=1e-6) | |
size = (100, 20) | |
weight = rng.normal(loc=weight_loc, scale=weight_scale, size=size[0]) | |
# Compare to weighted average: np.average | |
X = rng.normal(loc=mean, scale=var, size=size) | |
expected_mean = _safe_accumulator_op(np.average, X, weights=weight, axis=0) | |
expected_var = _safe_accumulator_op( | |
np.average, (X - expected_mean) ** 2, weights=weight, axis=0 | |
) | |
_assert(X, weight, expected_mean, expected_var) | |
# Compare to unweighted mean: np.mean | |
X = rng.normal(loc=mean, scale=var, size=size) | |
ones_weight = np.ones(size[0]) | |
expected_mean = _safe_accumulator_op(np.mean, X, axis=0) | |
expected_var = _safe_accumulator_op(np.var, X, axis=0) | |
_assert(X, ones_weight, expected_mean, expected_var) | |
def test_incremental_weighted_mean_and_variance_ignore_nan(dtype): | |
old_means = np.array([535.0, 535.0, 535.0, 535.0]) | |
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0]) | |
old_weight_sum = np.array([2, 2, 2, 2], dtype=np.int32) | |
sample_weights_X = np.ones(3) | |
sample_weights_X_nan = np.ones(4) | |
X = np.array( | |
[[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]] | |
).astype(dtype) | |
X_nan = np.array( | |
[ | |
[170, np.nan, 170, 170], | |
[np.nan, 170, 430, 430], | |
[430, 430, np.nan, 300], | |
[300, 300, 300, np.nan], | |
] | |
).astype(dtype) | |
X_means, X_variances, X_count = _incremental_mean_and_var( | |
X, old_means, old_variances, old_weight_sum, sample_weight=sample_weights_X | |
) | |
X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var( | |
X_nan, | |
old_means, | |
old_variances, | |
old_weight_sum, | |
sample_weight=sample_weights_X_nan, | |
) | |
assert_allclose(X_nan_means, X_means) | |
assert_allclose(X_nan_variances, X_variances) | |
assert_allclose(X_nan_count, X_count) | |
def test_incremental_variance_update_formulas(): | |
# Test Youngs and Cramer incremental variance formulas. | |
# Doggie data from https://www.mathsisfun.com/data/standard-deviation.html | |
A = np.array( | |
[ | |
[600, 470, 170, 430, 300], | |
[600, 470, 170, 430, 300], | |
[600, 470, 170, 430, 300], | |
[600, 470, 170, 430, 300], | |
] | |
).T | |
idx = 2 | |
X1 = A[:idx, :] | |
X2 = A[idx:, :] | |
old_means = X1.mean(axis=0) | |
old_variances = X1.var(axis=0) | |
old_sample_count = np.full(X1.shape[1], X1.shape[0], dtype=np.int32) | |
final_means, final_variances, final_count = _incremental_mean_and_var( | |
X2, old_means, old_variances, old_sample_count | |
) | |
assert_almost_equal(final_means, A.mean(axis=0), 6) | |
assert_almost_equal(final_variances, A.var(axis=0), 6) | |
assert_almost_equal(final_count, A.shape[0]) | |
def test_incremental_mean_and_variance_ignore_nan(): | |
old_means = np.array([535.0, 535.0, 535.0, 535.0]) | |
old_variances = np.array([4225.0, 4225.0, 4225.0, 4225.0]) | |
old_sample_count = np.array([2, 2, 2, 2], dtype=np.int32) | |
X = np.array([[170, 170, 170, 170], [430, 430, 430, 430], [300, 300, 300, 300]]) | |
X_nan = np.array( | |
[ | |
[170, np.nan, 170, 170], | |
[np.nan, 170, 430, 430], | |
[430, 430, np.nan, 300], | |
[300, 300, 300, np.nan], | |
] | |
) | |
X_means, X_variances, X_count = _incremental_mean_and_var( | |
X, old_means, old_variances, old_sample_count | |
) | |
X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var( | |
X_nan, old_means, old_variances, old_sample_count | |
) | |
assert_allclose(X_nan_means, X_means) | |
assert_allclose(X_nan_variances, X_variances) | |
assert_allclose(X_nan_count, X_count) | |
def test_incremental_variance_numerical_stability(): | |
# Test Youngs and Cramer incremental variance formulas. | |
def np_var(A): | |
return A.var(axis=0) | |
# Naive one pass variance computation - not numerically stable | |
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance | |
def one_pass_var(X): | |
n = X.shape[0] | |
exp_x2 = (X**2).sum(axis=0) / n | |
expx_2 = (X.sum(axis=0) / n) ** 2 | |
return exp_x2 - expx_2 | |
# Two-pass algorithm, stable. | |
# We use it as a benchmark. It is not an online algorithm | |
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm | |
def two_pass_var(X): | |
mean = X.mean(axis=0) | |
Y = X.copy() | |
return np.mean((Y - mean) ** 2, axis=0) | |
# Naive online implementation | |
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm | |
# This works only for chunks for size 1 | |
def naive_mean_variance_update(x, last_mean, last_variance, last_sample_count): | |
updated_sample_count = last_sample_count + 1 | |
samples_ratio = last_sample_count / float(updated_sample_count) | |
updated_mean = x / updated_sample_count + last_mean * samples_ratio | |
updated_variance = ( | |
last_variance * samples_ratio | |
+ (x - last_mean) * (x - updated_mean) / updated_sample_count | |
) | |
return updated_mean, updated_variance, updated_sample_count | |
# We want to show a case when one_pass_var has error > 1e-3 while | |
# _batch_mean_variance_update has less. | |
tol = 200 | |
n_features = 2 | |
n_samples = 10000 | |
x1 = np.array(1e8, dtype=np.float64) | |
x2 = np.log(1e-5, dtype=np.float64) | |
A0 = np.full((n_samples // 2, n_features), x1, dtype=np.float64) | |
A1 = np.full((n_samples // 2, n_features), x2, dtype=np.float64) | |
A = np.vstack((A0, A1)) | |
# Naive one pass var: >tol (=1063) | |
assert np.abs(np_var(A) - one_pass_var(A)).max() > tol | |
# Starting point for online algorithms: after A0 | |
# Naive implementation: >tol (436) | |
mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2 | |
for i in range(A1.shape[0]): | |
mean, var, n = naive_mean_variance_update(A1[i, :], mean, var, n) | |
assert n == A.shape[0] | |
# the mean is also slightly unstable | |
assert np.abs(A.mean(axis=0) - mean).max() > 1e-6 | |
assert np.abs(np_var(A) - var).max() > tol | |
# Robust implementation: <tol (177) | |
mean, var = A0[0, :], np.zeros(n_features) | |
n = np.full(n_features, n_samples // 2, dtype=np.int32) | |
for i in range(A1.shape[0]): | |
mean, var, n = _incremental_mean_and_var( | |
A1[i, :].reshape((1, A1.shape[1])), mean, var, n | |
) | |
assert_array_equal(n, A.shape[0]) | |
assert_array_almost_equal(A.mean(axis=0), mean) | |
assert tol > np.abs(np_var(A) - var).max() | |
def test_incremental_variance_ddof(): | |
# Test that degrees of freedom parameter for calculations are correct. | |
rng = np.random.RandomState(1999) | |
X = rng.randn(50, 10) | |
n_samples, n_features = X.shape | |
for batch_size in [11, 20, 37]: | |
steps = np.arange(0, X.shape[0], batch_size) | |
if steps[-1] != X.shape[0]: | |
steps = np.hstack([steps, n_samples]) | |
for i, j in zip(steps[:-1], steps[1:]): | |
batch = X[i:j, :] | |
if i == 0: | |
incremental_means = batch.mean(axis=0) | |
incremental_variances = batch.var(axis=0) | |
# Assign this twice so that the test logic is consistent | |
incremental_count = batch.shape[0] | |
sample_count = np.full(batch.shape[1], batch.shape[0], dtype=np.int32) | |
else: | |
result = _incremental_mean_and_var( | |
batch, incremental_means, incremental_variances, sample_count | |
) | |
(incremental_means, incremental_variances, incremental_count) = result | |
sample_count += batch.shape[0] | |
calculated_means = np.mean(X[:j], axis=0) | |
calculated_variances = np.var(X[:j], axis=0) | |
assert_almost_equal(incremental_means, calculated_means, 6) | |
assert_almost_equal(incremental_variances, calculated_variances, 6) | |
assert_array_equal(incremental_count, sample_count) | |
def test_vector_sign_flip(): | |
# Testing that sign flip is working & largest value has positive sign | |
data = np.random.RandomState(36).randn(5, 5) | |
max_abs_rows = np.argmax(np.abs(data), axis=1) | |
data_flipped = _deterministic_vector_sign_flip(data) | |
max_rows = np.argmax(data_flipped, axis=1) | |
assert_array_equal(max_abs_rows, max_rows) | |
signs = np.sign(data[range(data.shape[0]), max_abs_rows]) | |
assert_array_equal(data, data_flipped * signs[:, np.newaxis]) | |
def test_softmax(): | |
rng = np.random.RandomState(0) | |
X = rng.randn(3, 5) | |
exp_X = np.exp(X) | |
sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1)) | |
assert_array_almost_equal(softmax(X), exp_X / sum_exp_X) | |
def test_stable_cumsum(): | |
assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3])) | |
r = np.random.RandomState(0).rand(100000) | |
with pytest.warns(RuntimeWarning): | |
stable_cumsum(r, rtol=0, atol=0) | |
# test axis parameter | |
A = np.random.RandomState(36).randint(1000, size=(5, 5, 5)) | |
assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0)) | |
assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1)) | |
assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2)) | |
def test_safe_sparse_dot_2d(A_container, B_container): | |
rng = np.random.RandomState(0) | |
A = rng.random_sample((30, 10)) | |
B = rng.random_sample((10, 20)) | |
expected = np.dot(A, B) | |
A = A_container(A) | |
B = B_container(B) | |
actual = safe_sparse_dot(A, B, dense_output=True) | |
assert_allclose(actual, expected) | |
def test_safe_sparse_dot_nd(csr_container): | |
rng = np.random.RandomState(0) | |
# dense ND / sparse | |
A = rng.random_sample((2, 3, 4, 5, 6)) | |
B = rng.random_sample((6, 7)) | |
expected = np.dot(A, B) | |
B = csr_container(B) | |
actual = safe_sparse_dot(A, B) | |
assert_allclose(actual, expected) | |
# sparse / dense ND | |
A = rng.random_sample((2, 3)) | |
B = rng.random_sample((4, 5, 3, 6)) | |
expected = np.dot(A, B) | |
A = csr_container(A) | |
actual = safe_sparse_dot(A, B) | |
assert_allclose(actual, expected) | |
def test_safe_sparse_dot_2d_1d(container): | |
rng = np.random.RandomState(0) | |
B = rng.random_sample((10)) | |
# 2D @ 1D | |
A = rng.random_sample((30, 10)) | |
expected = np.dot(A, B) | |
actual = safe_sparse_dot(container(A), B) | |
assert_allclose(actual, expected) | |
# 1D @ 2D | |
A = rng.random_sample((10, 30)) | |
expected = np.dot(B, A) | |
actual = safe_sparse_dot(B, container(A)) | |
assert_allclose(actual, expected) | |
def test_safe_sparse_dot_dense_output(dense_output): | |
rng = np.random.RandomState(0) | |
A = sparse.random(30, 10, density=0.1, random_state=rng) | |
B = sparse.random(10, 20, density=0.1, random_state=rng) | |
expected = A.dot(B) | |
actual = safe_sparse_dot(A, B, dense_output=dense_output) | |
assert sparse.issparse(actual) == (not dense_output) | |
if dense_output: | |
expected = expected.toarray() | |
assert_allclose_dense_sparse(actual, expected) | |