peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_multiclass.py
from itertools import product | |
import numpy as np | |
import pytest | |
from scipy.sparse import issparse | |
from sklearn import config_context, datasets | |
from sklearn.model_selection import ShuffleSplit | |
from sklearn.svm import SVC | |
from sklearn.utils._array_api import yield_namespace_device_dtype_combinations | |
from sklearn.utils._testing import ( | |
_array_api_for_tests, | |
assert_allclose, | |
assert_array_almost_equal, | |
assert_array_equal, | |
) | |
from sklearn.utils.estimator_checks import _NotAnArray | |
from sklearn.utils.fixes import ( | |
COO_CONTAINERS, | |
CSC_CONTAINERS, | |
CSR_CONTAINERS, | |
DOK_CONTAINERS, | |
LIL_CONTAINERS, | |
) | |
from sklearn.utils.metaestimators import _safe_split | |
from sklearn.utils.multiclass import ( | |
_ovr_decision_function, | |
check_classification_targets, | |
class_distribution, | |
is_multilabel, | |
type_of_target, | |
unique_labels, | |
) | |
multilabel_explicit_zero = np.array([[0, 1], [1, 0]]) | |
multilabel_explicit_zero[:, 0] = 0 | |
def _generate_sparse( | |
data, | |
sparse_containers=tuple( | |
COO_CONTAINERS | |
+ CSC_CONTAINERS | |
+ CSR_CONTAINERS | |
+ DOK_CONTAINERS | |
+ LIL_CONTAINERS | |
), | |
dtypes=(bool, int, np.int8, np.uint8, float, np.float32), | |
): | |
return [ | |
sparse_container(data, dtype=dtype) | |
for sparse_container in sparse_containers | |
for dtype in dtypes | |
] | |
EXAMPLES = { | |
"multilabel-indicator": [ | |
# valid when the data is formatted as sparse or dense, identified | |
# by CSR format when the testing takes place | |
*_generate_sparse( | |
np.random.RandomState(42).randint(2, size=(10, 10)), | |
sparse_containers=CSR_CONTAINERS, | |
dtypes=(int,), | |
), | |
[[0, 1], [1, 0]], | |
[[0, 1]], | |
*_generate_sparse( | |
multilabel_explicit_zero, sparse_containers=CSC_CONTAINERS, dtypes=(int,) | |
), | |
*_generate_sparse([[0, 1], [1, 0]]), | |
*_generate_sparse([[0, 0], [0, 0]]), | |
*_generate_sparse([[0, 1]]), | |
# Only valid when data is dense | |
[[-1, 1], [1, -1]], | |
np.array([[-1, 1], [1, -1]]), | |
np.array([[-3, 3], [3, -3]]), | |
_NotAnArray(np.array([[-3, 3], [3, -3]])), | |
], | |
"multiclass": [ | |
[1, 0, 2, 2, 1, 4, 2, 4, 4, 4], | |
np.array([1, 0, 2]), | |
np.array([1, 0, 2], dtype=np.int8), | |
np.array([1, 0, 2], dtype=np.uint8), | |
np.array([1, 0, 2], dtype=float), | |
np.array([1, 0, 2], dtype=np.float32), | |
np.array([[1], [0], [2]]), | |
_NotAnArray(np.array([1, 0, 2])), | |
[0, 1, 2], | |
["a", "b", "c"], | |
np.array(["a", "b", "c"]), | |
np.array(["a", "b", "c"], dtype=object), | |
np.array(["a", "b", "c"], dtype=object), | |
], | |
"multiclass-multioutput": [ | |
[[1, 0, 2, 2], [1, 4, 2, 4]], | |
[["a", "b"], ["c", "d"]], | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), | |
*_generate_sparse( | |
[[1, 0, 2, 2], [1, 4, 2, 4]], | |
sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS, | |
dtypes=(int, np.int8, np.uint8, float, np.float32), | |
), | |
np.array([["a", "b"], ["c", "d"]]), | |
np.array([["a", "b"], ["c", "d"]]), | |
np.array([["a", "b"], ["c", "d"]], dtype=object), | |
np.array([[1, 0, 2]]), | |
_NotAnArray(np.array([[1, 0, 2]])), | |
], | |
"binary": [ | |
[0, 1], | |
[1, 1], | |
[], | |
[0], | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), | |
np.array([[0], [1]]), | |
_NotAnArray(np.array([[0], [1]])), | |
[1, -1], | |
[3, 5], | |
["a"], | |
["a", "b"], | |
["abc", "def"], | |
np.array(["abc", "def"]), | |
["a", "b"], | |
np.array(["abc", "def"], dtype=object), | |
], | |
"continuous": [ | |
[1e-5], | |
[0, 0.5], | |
np.array([[0], [0.5]]), | |
np.array([[0], [0.5]], dtype=np.float32), | |
], | |
"continuous-multioutput": [ | |
np.array([[0, 0.5], [0.5, 0]]), | |
np.array([[0, 0.5], [0.5, 0]], dtype=np.float32), | |
np.array([[0, 0.5]]), | |
*_generate_sparse( | |
[[0, 0.5], [0.5, 0]], | |
sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS, | |
dtypes=(float, np.float32), | |
), | |
*_generate_sparse( | |
[[0, 0.5]], | |
sparse_containers=CSC_CONTAINERS + CSR_CONTAINERS, | |
dtypes=(float, np.float32), | |
), | |
], | |
"unknown": [ | |
[[]], | |
np.array([[]], dtype=object), | |
[()], | |
# sequence of sequences that weren't supported even before deprecation | |
np.array([np.array([]), np.array([1, 2, 3])], dtype=object), | |
[np.array([]), np.array([1, 2, 3])], | |
[{1, 2, 3}, {1, 2}], | |
[frozenset([1, 2, 3]), frozenset([1, 2])], | |
# and also confusable as sequences of sequences | |
[{0: "a", 1: "b"}, {0: "a"}], | |
# ndim 0 | |
np.array(0), | |
# empty second dimension | |
np.array([[], []]), | |
# 3d | |
np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), | |
], | |
} | |
ARRAY_API_EXAMPLES = { | |
"multilabel-indicator": [ | |
np.random.RandomState(42).randint(2, size=(10, 10)), | |
[[0, 1], [1, 0]], | |
[[0, 1]], | |
multilabel_explicit_zero, | |
[[0, 0], [0, 0]], | |
[[-1, 1], [1, -1]], | |
np.array([[-1, 1], [1, -1]]), | |
np.array([[-3, 3], [3, -3]]), | |
_NotAnArray(np.array([[-3, 3], [3, -3]])), | |
], | |
"multiclass": [ | |
[1, 0, 2, 2, 1, 4, 2, 4, 4, 4], | |
np.array([1, 0, 2]), | |
np.array([1, 0, 2], dtype=np.int8), | |
np.array([1, 0, 2], dtype=np.uint8), | |
np.array([1, 0, 2], dtype=float), | |
np.array([1, 0, 2], dtype=np.float32), | |
np.array([[1], [0], [2]]), | |
_NotAnArray(np.array([1, 0, 2])), | |
[0, 1, 2], | |
], | |
"multiclass-multioutput": [ | |
[[1, 0, 2, 2], [1, 4, 2, 4]], | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=float), | |
np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), | |
np.array([[1, 0, 2]]), | |
_NotAnArray(np.array([[1, 0, 2]])), | |
], | |
"binary": [ | |
[0, 1], | |
[1, 1], | |
[], | |
[0], | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=bool), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=float), | |
np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), | |
np.array([[0], [1]]), | |
_NotAnArray(np.array([[0], [1]])), | |
[1, -1], | |
[3, 5], | |
], | |
"continuous": [ | |
[1e-5], | |
[0, 0.5], | |
np.array([[0], [0.5]]), | |
np.array([[0], [0.5]], dtype=np.float32), | |
], | |
"continuous-multioutput": [ | |
np.array([[0, 0.5], [0.5, 0]]), | |
np.array([[0, 0.5], [0.5, 0]], dtype=np.float32), | |
np.array([[0, 0.5]]), | |
], | |
"unknown": [ | |
[[]], | |
[()], | |
np.array(0), | |
np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), | |
], | |
} | |
NON_ARRAY_LIKE_EXAMPLES = [ | |
{1, 2, 3}, | |
{0: "a", 1: "b"}, | |
{0: [5], 1: [5]}, | |
"abc", | |
frozenset([1, 2, 3]), | |
None, | |
] | |
MULTILABEL_SEQUENCES = [ | |
[[1], [2], [0, 1]], | |
[(), (2), (0, 1)], | |
np.array([[], [1, 2]], dtype="object"), | |
_NotAnArray(np.array([[], [1, 2]], dtype="object")), | |
] | |
def test_unique_labels(): | |
# Empty iterable | |
with pytest.raises(ValueError): | |
unique_labels() | |
# Multiclass problem | |
assert_array_equal(unique_labels(range(10)), np.arange(10)) | |
assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) | |
assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) | |
# Multilabel indicator | |
assert_array_equal( | |
unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3) | |
) | |
assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) | |
# Several arrays passed | |
assert_array_equal(unique_labels([4, 0, 2], range(5)), np.arange(5)) | |
assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) | |
# Border line case with binary indicator matrix | |
with pytest.raises(ValueError): | |
unique_labels([4, 0, 2], np.ones((5, 5))) | |
with pytest.raises(ValueError): | |
unique_labels(np.ones((5, 4)), np.ones((5, 5))) | |
assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) | |
def test_unique_labels_non_specific(): | |
# Test unique_labels with a variety of collected examples | |
# Smoke test for all supported format | |
for format in ["binary", "multiclass", "multilabel-indicator"]: | |
for y in EXAMPLES[format]: | |
unique_labels(y) | |
# We don't support those format at the moment | |
for example in NON_ARRAY_LIKE_EXAMPLES: | |
with pytest.raises(ValueError): | |
unique_labels(example) | |
for y_type in [ | |
"unknown", | |
"continuous", | |
"continuous-multioutput", | |
"multiclass-multioutput", | |
]: | |
for example in EXAMPLES[y_type]: | |
with pytest.raises(ValueError): | |
unique_labels(example) | |
def test_unique_labels_mixed_types(): | |
# Mix with binary or multiclass and multilabel | |
mix_clf_format = product( | |
EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"] | |
) | |
for y_multilabel, y_multiclass in mix_clf_format: | |
with pytest.raises(ValueError): | |
unique_labels(y_multiclass, y_multilabel) | |
with pytest.raises(ValueError): | |
unique_labels(y_multilabel, y_multiclass) | |
with pytest.raises(ValueError): | |
unique_labels([[1, 2]], [["a", "d"]]) | |
with pytest.raises(ValueError): | |
unique_labels(["1", 2]) | |
with pytest.raises(ValueError): | |
unique_labels([["1", 2], [1, 3]]) | |
with pytest.raises(ValueError): | |
unique_labels([["1", "2"], [2, 3]]) | |
def test_is_multilabel(): | |
for group, group_examples in EXAMPLES.items(): | |
dense_exp = group == "multilabel-indicator" | |
for example in group_examples: | |
# Only mark explicitly defined sparse examples as valid sparse | |
# multilabel-indicators | |
sparse_exp = dense_exp and issparse(example) | |
if issparse(example) or ( | |
hasattr(example, "__array__") | |
and np.asarray(example).ndim == 2 | |
and np.asarray(example).dtype.kind in "biuf" | |
and np.asarray(example).shape[1] > 0 | |
): | |
examples_sparse = [ | |
sparse_container(example) | |
for sparse_container in ( | |
COO_CONTAINERS | |
+ CSC_CONTAINERS | |
+ CSR_CONTAINERS | |
+ DOK_CONTAINERS | |
+ LIL_CONTAINERS | |
) | |
] | |
for exmpl_sparse in examples_sparse: | |
assert sparse_exp == is_multilabel( | |
exmpl_sparse | |
), f"is_multilabel({exmpl_sparse!r}) should be {sparse_exp}" | |
# Densify sparse examples before testing | |
if issparse(example): | |
example = example.toarray() | |
assert dense_exp == is_multilabel( | |
example | |
), f"is_multilabel({example!r}) should be {dense_exp}" | |
def test_is_multilabel_array_api_compliance(array_namespace, device, dtype_name): | |
xp = _array_api_for_tests(array_namespace, device) | |
for group, group_examples in ARRAY_API_EXAMPLES.items(): | |
dense_exp = group == "multilabel-indicator" | |
for example in group_examples: | |
if np.asarray(example).dtype.kind == "f": | |
example = np.asarray(example, dtype=dtype_name) | |
else: | |
example = np.asarray(example) | |
example = xp.asarray(example, device=device) | |
with config_context(array_api_dispatch=True): | |
assert dense_exp == is_multilabel( | |
example | |
), f"is_multilabel({example!r}) should be {dense_exp}" | |
def test_check_classification_targets(): | |
for y_type in EXAMPLES.keys(): | |
if y_type in ["unknown", "continuous", "continuous-multioutput"]: | |
for example in EXAMPLES[y_type]: | |
msg = "Unknown label type: " | |
with pytest.raises(ValueError, match=msg): | |
check_classification_targets(example) | |
else: | |
for example in EXAMPLES[y_type]: | |
check_classification_targets(example) | |
# @ignore_warnings | |
def test_type_of_target(): | |
for group, group_examples in EXAMPLES.items(): | |
for example in group_examples: | |
assert ( | |
type_of_target(example) == group | |
), "type_of_target(%r) should be %r, got %r" % ( | |
example, | |
group, | |
type_of_target(example), | |
) | |
for example in NON_ARRAY_LIKE_EXAMPLES: | |
msg_regex = r"Expected array-like \(array or non-string sequence\).*" | |
with pytest.raises(ValueError, match=msg_regex): | |
type_of_target(example) | |
for example in MULTILABEL_SEQUENCES: | |
msg = ( | |
"You appear to be using a legacy multi-label data " | |
"representation. Sequence of sequences are no longer supported;" | |
" use a binary array or sparse matrix instead." | |
) | |
with pytest.raises(ValueError, match=msg): | |
type_of_target(example) | |
def test_type_of_target_pandas_sparse(): | |
pd = pytest.importorskip("pandas") | |
y = pd.arrays.SparseArray([1, np.nan, np.nan, 1, np.nan]) | |
msg = "y cannot be class 'SparseSeries' or 'SparseArray'" | |
with pytest.raises(ValueError, match=msg): | |
type_of_target(y) | |
def test_type_of_target_pandas_nullable(): | |
"""Check that type_of_target works with pandas nullable dtypes.""" | |
pd = pytest.importorskip("pandas") | |
for dtype in ["Int32", "Float32"]: | |
y_true = pd.Series([1, 0, 2, 3, 4], dtype=dtype) | |
assert type_of_target(y_true) == "multiclass" | |
y_true = pd.Series([1, 0, 1, 0], dtype=dtype) | |
assert type_of_target(y_true) == "binary" | |
y_true = pd.DataFrame([[1.4, 3.1], [3.1, 1.4]], dtype="Float32") | |
assert type_of_target(y_true) == "continuous-multioutput" | |
y_true = pd.DataFrame([[0, 1], [1, 1]], dtype="Int32") | |
assert type_of_target(y_true) == "multilabel-indicator" | |
y_true = pd.DataFrame([[1, 2], [3, 1]], dtype="Int32") | |
assert type_of_target(y_true) == "multiclass-multioutput" | |
def test_unique_labels_pandas_nullable(dtype): | |
"""Checks that unique_labels work with pandas nullable dtypes. | |
Non-regression test for gh-25634. | |
""" | |
pd = pytest.importorskip("pandas") | |
y_true = pd.Series([1, 0, 0, 1, 0, 1, 1, 0, 1], dtype=dtype) | |
y_predicted = pd.Series([0, 0, 1, 1, 0, 1, 1, 1, 1], dtype="int64") | |
labels = unique_labels(y_true, y_predicted) | |
assert_array_equal(labels, [0, 1]) | |
def test_class_distribution(csc_container): | |
y = np.array( | |
[ | |
[1, 0, 0, 1], | |
[2, 2, 0, 1], | |
[1, 3, 0, 1], | |
[4, 2, 0, 1], | |
[2, 0, 0, 1], | |
[1, 3, 0, 1], | |
] | |
) | |
# Define the sparse matrix with a mix of implicit and explicit zeros | |
data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) | |
indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) | |
indptr = np.array([0, 6, 11, 11, 17]) | |
y_sp = csc_container((data, indices, indptr), shape=(6, 4)) | |
classes, n_classes, class_prior = class_distribution(y) | |
classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) | |
classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] | |
n_classes_expected = [3, 3, 1, 1] | |
class_prior_expected = [[3 / 6, 2 / 6, 1 / 6], [1 / 3, 1 / 3, 1 / 3], [1.0], [1.0]] | |
for k in range(y.shape[1]): | |
assert_array_almost_equal(classes[k], classes_expected[k]) | |
assert_array_almost_equal(n_classes[k], n_classes_expected[k]) | |
assert_array_almost_equal(class_prior[k], class_prior_expected[k]) | |
assert_array_almost_equal(classes_sp[k], classes_expected[k]) | |
assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) | |
assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) | |
# Test again with explicit sample weights | |
(classes, n_classes, class_prior) = class_distribution( | |
y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0] | |
) | |
(classes_sp, n_classes_sp, class_prior_sp) = class_distribution( | |
y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0] | |
) | |
class_prior_expected = [[4 / 9, 3 / 9, 2 / 9], [2 / 9, 4 / 9, 3 / 9], [1.0], [1.0]] | |
for k in range(y.shape[1]): | |
assert_array_almost_equal(classes[k], classes_expected[k]) | |
assert_array_almost_equal(n_classes[k], n_classes_expected[k]) | |
assert_array_almost_equal(class_prior[k], class_prior_expected[k]) | |
assert_array_almost_equal(classes_sp[k], classes_expected[k]) | |
assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) | |
assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) | |
def test_safe_split_with_precomputed_kernel(): | |
clf = SVC() | |
clfp = SVC(kernel="precomputed") | |
iris = datasets.load_iris() | |
X, y = iris.data, iris.target | |
K = np.dot(X, X.T) | |
cv = ShuffleSplit(test_size=0.25, random_state=0) | |
train, test = list(cv.split(X))[0] | |
X_train, y_train = _safe_split(clf, X, y, train) | |
K_train, y_train2 = _safe_split(clfp, K, y, train) | |
assert_array_almost_equal(K_train, np.dot(X_train, X_train.T)) | |
assert_array_almost_equal(y_train, y_train2) | |
X_test, y_test = _safe_split(clf, X, y, test, train) | |
K_test, y_test2 = _safe_split(clfp, K, y, test, train) | |
assert_array_almost_equal(K_test, np.dot(X_test, X_train.T)) | |
assert_array_almost_equal(y_test, y_test2) | |
def test_ovr_decision_function(): | |
# test properties for ovr decision function | |
predictions = np.array([[0, 1, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) | |
confidences = np.array( | |
[[-1e16, 0, -1e16], [1.0, 2.0, -3.0], [-5.0, 2.0, 5.0], [-0.5, 0.2, 0.5]] | |
) | |
n_classes = 3 | |
dec_values = _ovr_decision_function(predictions, confidences, n_classes) | |
# check that the decision values are within 0.5 range of the votes | |
votes = np.array([[1, 0, 2], [1, 1, 1], [1, 0, 2], [1, 0, 2]]) | |
assert_allclose(votes, dec_values, atol=0.5) | |
# check that the prediction are what we expect | |
# highest vote or highest confidence if there is a tie. | |
# for the second sample we have a tie (should be won by 1) | |
expected_prediction = np.array([2, 1, 2, 2]) | |
assert_array_equal(np.argmax(dec_values, axis=1), expected_prediction) | |
# third and fourth sample have the same vote but third sample | |
# has higher confidence, this should reflect on the decision values | |
assert dec_values[2, 2] > dec_values[3, 2] | |
# assert subset invariance. | |
dec_values_one = [ | |
_ovr_decision_function( | |
np.array([predictions[i]]), np.array([confidences[i]]), n_classes | |
)[0] | |
for i in range(4) | |
] | |
assert_allclose(dec_values, dec_values_one, atol=1e-6) | |