peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_response.py
import numpy as np | |
import pytest | |
from sklearn.datasets import ( | |
load_iris, | |
make_classification, | |
make_multilabel_classification, | |
make_regression, | |
) | |
from sklearn.ensemble import IsolationForest | |
from sklearn.linear_model import ( | |
LinearRegression, | |
LogisticRegression, | |
) | |
from sklearn.multioutput import ClassifierChain | |
from sklearn.preprocessing import scale | |
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from sklearn.utils._mocking import _MockEstimatorOnOffPrediction | |
from sklearn.utils._response import _get_response_values, _get_response_values_binary | |
from sklearn.utils._testing import assert_allclose, assert_array_equal | |
X, y = load_iris(return_X_y=True) | |
# scale the data to avoid ConvergenceWarning with LogisticRegression | |
X = scale(X, copy=False) | |
X_binary, y_binary = X[:100], y[:100] | |
def test_get_response_values_regressor_error(response_method): | |
"""Check the error message with regressor an not supported response | |
method.""" | |
my_estimator = _MockEstimatorOnOffPrediction(response_methods=[response_method]) | |
X = "mocking_data", "mocking_target" | |
err_msg = f"{my_estimator.__class__.__name__} should either be a classifier" | |
with pytest.raises(ValueError, match=err_msg): | |
_get_response_values(my_estimator, X, response_method=response_method) | |
def test_get_response_values_regressor(return_response_method_used): | |
"""Check the behaviour of `_get_response_values` with regressor.""" | |
X, y = make_regression(n_samples=10, random_state=0) | |
regressor = LinearRegression().fit(X, y) | |
results = _get_response_values( | |
regressor, | |
X, | |
response_method="predict", | |
return_response_method_used=return_response_method_used, | |
) | |
assert_array_equal(results[0], regressor.predict(X)) | |
assert results[1] is None | |
if return_response_method_used: | |
assert results[2] == "predict" | |
def test_get_response_values_outlier_detection( | |
response_method, return_response_method_used | |
): | |
"""Check the behaviour of `_get_response_values` with outlier detector.""" | |
X, y = make_classification(n_samples=50, random_state=0) | |
outlier_detector = IsolationForest(random_state=0).fit(X, y) | |
results = _get_response_values( | |
outlier_detector, | |
X, | |
response_method=response_method, | |
return_response_method_used=return_response_method_used, | |
) | |
chosen_response_method = ( | |
response_method[0] if isinstance(response_method, list) else response_method | |
) | |
prediction_method = getattr(outlier_detector, chosen_response_method) | |
assert_array_equal(results[0], prediction_method(X)) | |
assert results[1] is None | |
if return_response_method_used: | |
assert results[2] == chosen_response_method | |
def test_get_response_values_classifier_unknown_pos_label(response_method): | |
"""Check that `_get_response_values` raises the proper error message with | |
classifier.""" | |
X, y = make_classification(n_samples=10, n_classes=2, random_state=0) | |
classifier = LogisticRegression().fit(X, y) | |
# provide a `pos_label` which is not in `y` | |
err_msg = r"pos_label=whatever is not a valid label: It should be one of \[0 1\]" | |
with pytest.raises(ValueError, match=err_msg): | |
_get_response_values( | |
classifier, | |
X, | |
response_method=response_method, | |
pos_label="whatever", | |
) | |
def test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba( | |
response_method, | |
): | |
"""Check that `_get_response_values` will raise an error when `y_pred` has a | |
single class with `predict_proba`.""" | |
X, y_two_class = make_classification(n_samples=10, n_classes=2, random_state=0) | |
y_single_class = np.zeros_like(y_two_class) | |
classifier = DecisionTreeClassifier().fit(X, y_single_class) | |
err_msg = ( | |
r"Got predict_proba of shape \(10, 1\), but need classifier with " | |
r"two classes" | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
_get_response_values(classifier, X, response_method=response_method) | |
def test_get_response_values_binary_classifier_decision_function( | |
return_response_method_used, | |
): | |
"""Check the behaviour of `_get_response_values` with `decision_function` | |
and binary classifier.""" | |
X, y = make_classification( | |
n_samples=10, | |
n_classes=2, | |
weights=[0.3, 0.7], | |
random_state=0, | |
) | |
classifier = LogisticRegression().fit(X, y) | |
response_method = "decision_function" | |
# default `pos_label` | |
results = _get_response_values( | |
classifier, | |
X, | |
response_method=response_method, | |
pos_label=None, | |
return_response_method_used=return_response_method_used, | |
) | |
assert_allclose(results[0], classifier.decision_function(X)) | |
assert results[1] == 1 | |
if return_response_method_used: | |
assert results[2] == "decision_function" | |
# when forcing `pos_label=classifier.classes_[0]` | |
results = _get_response_values( | |
classifier, | |
X, | |
response_method=response_method, | |
pos_label=classifier.classes_[0], | |
return_response_method_used=return_response_method_used, | |
) | |
assert_allclose(results[0], classifier.decision_function(X) * -1) | |
assert results[1] == 0 | |
if return_response_method_used: | |
assert results[2] == "decision_function" | |
def test_get_response_values_binary_classifier_predict_proba( | |
return_response_method_used, response_method | |
): | |
"""Check that `_get_response_values` with `predict_proba` and binary | |
classifier.""" | |
X, y = make_classification( | |
n_samples=10, | |
n_classes=2, | |
weights=[0.3, 0.7], | |
random_state=0, | |
) | |
classifier = LogisticRegression().fit(X, y) | |
# default `pos_label` | |
results = _get_response_values( | |
classifier, | |
X, | |
response_method=response_method, | |
pos_label=None, | |
return_response_method_used=return_response_method_used, | |
) | |
assert_allclose(results[0], getattr(classifier, response_method)(X)[:, 1]) | |
assert results[1] == 1 | |
if return_response_method_used: | |
assert len(results) == 3 | |
assert results[2] == response_method | |
else: | |
assert len(results) == 2 | |
# when forcing `pos_label=classifier.classes_[0]` | |
y_pred, pos_label, *_ = _get_response_values( | |
classifier, | |
X, | |
response_method=response_method, | |
pos_label=classifier.classes_[0], | |
return_response_method_used=return_response_method_used, | |
) | |
assert_allclose(y_pred, getattr(classifier, response_method)(X)[:, 0]) | |
assert pos_label == 0 | |
def test_get_response_error(estimator, X, y, err_msg, params): | |
"""Check that we raise the proper error messages in _get_response_values_binary.""" | |
estimator.fit(X, y) | |
with pytest.raises(ValueError, match=err_msg): | |
_get_response_values_binary(estimator, X, **params) | |
def test_get_response_predict_proba(): | |
"""Check the behaviour of `_get_response_values_binary` using `predict_proba`.""" | |
classifier = DecisionTreeClassifier().fit(X_binary, y_binary) | |
y_proba, pos_label = _get_response_values_binary( | |
classifier, X_binary, response_method="predict_proba" | |
) | |
assert_allclose(y_proba, classifier.predict_proba(X_binary)[:, 1]) | |
assert pos_label == 1 | |
y_proba, pos_label = _get_response_values_binary( | |
classifier, X_binary, response_method="predict_proba", pos_label=0 | |
) | |
assert_allclose(y_proba, classifier.predict_proba(X_binary)[:, 0]) | |
assert pos_label == 0 | |
def test_get_response_decision_function(): | |
"""Check the behaviour of `_get_response_values_binary` using decision_function.""" | |
classifier = LogisticRegression().fit(X_binary, y_binary) | |
y_score, pos_label = _get_response_values_binary( | |
classifier, X_binary, response_method="decision_function" | |
) | |
assert_allclose(y_score, classifier.decision_function(X_binary)) | |
assert pos_label == 1 | |
y_score, pos_label = _get_response_values_binary( | |
classifier, X_binary, response_method="decision_function", pos_label=0 | |
) | |
assert_allclose(y_score, classifier.decision_function(X_binary) * -1) | |
assert pos_label == 0 | |
def test_get_response_values_multiclass(estimator, response_method): | |
"""Check that we can call `_get_response_values` with a multiclass estimator. | |
It should return the predictions untouched. | |
""" | |
estimator.fit(X, y) | |
predictions, pos_label = _get_response_values( | |
estimator, X, response_method=response_method | |
) | |
assert pos_label is None | |
assert predictions.shape == (X.shape[0], len(estimator.classes_)) | |
if response_method == "predict_proba": | |
assert np.logical_and(predictions >= 0, predictions <= 1).all() | |
elif response_method == "predict_log_proba": | |
assert (predictions <= 0.0).all() | |
def test_get_response_values_with_response_list(): | |
"""Check the behaviour of passing a list of responses to `_get_response_values`.""" | |
classifier = LogisticRegression().fit(X_binary, y_binary) | |
# it should use `predict_proba` | |
y_pred, pos_label, response_method = _get_response_values( | |
classifier, | |
X_binary, | |
response_method=["predict_proba", "decision_function"], | |
return_response_method_used=True, | |
) | |
assert_allclose(y_pred, classifier.predict_proba(X_binary)[:, 1]) | |
assert pos_label == 1 | |
assert response_method == "predict_proba" | |
# it should use `decision_function` | |
y_pred, pos_label, response_method = _get_response_values( | |
classifier, | |
X_binary, | |
response_method=["decision_function", "predict_proba"], | |
return_response_method_used=True, | |
) | |
assert_allclose(y_pred, classifier.decision_function(X_binary)) | |
assert pos_label == 1 | |
assert response_method == "decision_function" | |
def test_get_response_values_multilabel_indicator(response_method): | |
X, Y = make_multilabel_classification(random_state=0) | |
estimator = ClassifierChain(LogisticRegression()).fit(X, Y) | |
y_pred, pos_label = _get_response_values( | |
estimator, X, response_method=response_method | |
) | |
assert pos_label is None | |
assert y_pred.shape == Y.shape | |
if response_method == "predict_proba": | |
assert np.logical_and(y_pred >= 0, y_pred <= 1).all() | |
elif response_method == "decision_function": | |
# values returned by `decision_function` are not bounded in [0, 1] | |
assert (y_pred < 0).sum() > 0 | |
assert (y_pred > 1).sum() > 0 | |
else: # response_method == "predict" | |
assert np.logical_or(y_pred == 0, y_pred == 1).all() | |