peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/utils
/tests
/test_utils.py
import string | |
import timeit | |
import warnings | |
from copy import copy | |
from itertools import chain | |
from unittest import SkipTest | |
import numpy as np | |
import pytest | |
from sklearn import config_context | |
from sklearn.externals._packaging.version import parse as parse_version | |
from sklearn.utils import ( | |
_approximate_mode, | |
_determine_key_type, | |
_get_column_indices, | |
_is_polars_df, | |
_message_with_time, | |
_print_elapsed_time, | |
_safe_assign, | |
_safe_indexing, | |
_to_object_array, | |
check_random_state, | |
column_or_1d, | |
deprecated, | |
gen_even_slices, | |
get_chunk_n_rows, | |
is_scalar_nan, | |
resample, | |
safe_mask, | |
shuffle, | |
) | |
from sklearn.utils._mocking import MockDataFrame | |
from sklearn.utils._testing import ( | |
_convert_container, | |
assert_allclose_dense_sparse, | |
assert_array_equal, | |
assert_no_warnings, | |
) | |
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS | |
# toy array | |
X_toy = np.arange(9).reshape((3, 3)) | |
def test_make_rng(): | |
# Check the check_random_state utility function behavior | |
assert check_random_state(None) is np.random.mtrand._rand | |
assert check_random_state(np.random) is np.random.mtrand._rand | |
rng_42 = np.random.RandomState(42) | |
assert check_random_state(42).randint(100) == rng_42.randint(100) | |
rng_42 = np.random.RandomState(42) | |
assert check_random_state(rng_42) is rng_42 | |
rng_42 = np.random.RandomState(42) | |
assert check_random_state(43).randint(100) != rng_42.randint(100) | |
with pytest.raises(ValueError): | |
check_random_state("some invalid seed") | |
def test_deprecated(): | |
# Test whether the deprecated decorator issues appropriate warnings | |
# Copied almost verbatim from https://docs.python.org/library/warnings.html | |
# First a function... | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter("always") | |
def ham(): | |
return "spam" | |
spam = ham() | |
assert spam == "spam" # function must remain usable | |
assert len(w) == 1 | |
assert issubclass(w[0].category, FutureWarning) | |
assert "deprecated" in str(w[0].message).lower() | |
# ... then a class. | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter("always") | |
class Ham: | |
SPAM = 1 | |
ham = Ham() | |
assert hasattr(ham, "SPAM") | |
assert len(w) == 1 | |
assert issubclass(w[0].category, FutureWarning) | |
assert "deprecated" in str(w[0].message).lower() | |
def test_resample(): | |
# Border case not worth mentioning in doctests | |
assert resample() is None | |
# Check that invalid arguments yield ValueError | |
with pytest.raises(ValueError): | |
resample([0], [0, 1]) | |
with pytest.raises(ValueError): | |
resample([0, 1], [0, 1], replace=False, n_samples=3) | |
# Issue:6581, n_samples can be more when replace is True (default). | |
assert len(resample([1, 2], n_samples=5)) == 5 | |
def test_resample_stratified(): | |
# Make sure resample can stratify | |
rng = np.random.RandomState(0) | |
n_samples = 100 | |
p = 0.9 | |
X = rng.normal(size=(n_samples, 1)) | |
y = rng.binomial(1, p, size=n_samples) | |
_, y_not_stratified = resample(X, y, n_samples=10, random_state=0, stratify=None) | |
assert np.all(y_not_stratified == 1) | |
_, y_stratified = resample(X, y, n_samples=10, random_state=0, stratify=y) | |
assert not np.all(y_stratified == 1) | |
assert np.sum(y_stratified) == 9 # all 1s, one 0 | |
def test_resample_stratified_replace(): | |
# Make sure stratified resampling supports the replace parameter | |
rng = np.random.RandomState(0) | |
n_samples = 100 | |
X = rng.normal(size=(n_samples, 1)) | |
y = rng.randint(0, 2, size=n_samples) | |
X_replace, _ = resample( | |
X, y, replace=True, n_samples=50, random_state=rng, stratify=y | |
) | |
X_no_replace, _ = resample( | |
X, y, replace=False, n_samples=50, random_state=rng, stratify=y | |
) | |
assert np.unique(X_replace).shape[0] < 50 | |
assert np.unique(X_no_replace).shape[0] == 50 | |
# make sure n_samples can be greater than X.shape[0] if we sample with | |
# replacement | |
X_replace, _ = resample( | |
X, y, replace=True, n_samples=1000, random_state=rng, stratify=y | |
) | |
assert X_replace.shape[0] == 1000 | |
assert np.unique(X_replace).shape[0] == 100 | |
def test_resample_stratify_2dy(): | |
# Make sure y can be 2d when stratifying | |
rng = np.random.RandomState(0) | |
n_samples = 100 | |
X = rng.normal(size=(n_samples, 1)) | |
y = rng.randint(0, 2, size=(n_samples, 2)) | |
X, y = resample(X, y, n_samples=50, random_state=rng, stratify=y) | |
assert y.ndim == 2 | |
def test_resample_stratify_sparse_error(csr_container): | |
# resample must be ndarray | |
rng = np.random.RandomState(0) | |
n_samples = 100 | |
X = rng.normal(size=(n_samples, 2)) | |
y = rng.randint(0, 2, size=n_samples) | |
stratify = csr_container(y.reshape(-1, 1)) | |
with pytest.raises(TypeError, match="Sparse data was passed"): | |
X, y = resample(X, y, n_samples=50, random_state=rng, stratify=stratify) | |
def test_safe_mask(csr_container): | |
random_state = check_random_state(0) | |
X = random_state.rand(5, 4) | |
X_csr = csr_container(X) | |
mask = [False, False, True, True, True] | |
mask = safe_mask(X, mask) | |
assert X[mask].shape[0] == 3 | |
mask = safe_mask(X_csr, mask) | |
assert X_csr[mask].shape[0] == 3 | |
def test_column_or_1d(): | |
EXAMPLES = [ | |
("binary", ["spam", "egg", "spam"]), | |
("binary", [0, 1, 0, 1]), | |
("continuous", np.arange(10) / 20.0), | |
("multiclass", [1, 2, 3]), | |
("multiclass", [0, 1, 2, 2, 0]), | |
("multiclass", [[1], [2], [3]]), | |
("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), | |
("multiclass-multioutput", [[1, 2, 3]]), | |
("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), | |
("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), | |
("multiclass-multioutput", [[1, 2, 3]]), | |
("continuous-multioutput", np.arange(30).reshape((-1, 3))), | |
] | |
for y_type, y in EXAMPLES: | |
if y_type in ["binary", "multiclass", "continuous"]: | |
assert_array_equal(column_or_1d(y), np.ravel(y)) | |
else: | |
with pytest.raises(ValueError): | |
column_or_1d(y) | |
def test_determine_key_type(key, dtype): | |
assert _determine_key_type(key) == dtype | |
def test_determine_key_type_error(): | |
with pytest.raises(ValueError, match="No valid specification of the"): | |
_determine_key_type(1.0) | |
def test_determine_key_type_slice_error(): | |
with pytest.raises(TypeError, match="Only array-like or scalar are"): | |
_determine_key_type(slice(0, 2, 1), accept_slice=False) | |
def test_safe_indexing_2d_container_axis_0(array_type, indices_type): | |
indices = [1, 2] | |
if indices_type == "slice" and isinstance(indices[1], int): | |
indices[1] += 1 | |
array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) | |
indices = _convert_container(indices, indices_type) | |
subset = _safe_indexing(array, indices, axis=0) | |
assert_allclose_dense_sparse( | |
subset, _convert_container([[4, 5, 6], [7, 8, 9]], array_type) | |
) | |
def test_safe_indexing_1d_container(array_type, indices_type): | |
indices = [1, 2] | |
if indices_type == "slice" and isinstance(indices[1], int): | |
indices[1] += 1 | |
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) | |
indices = _convert_container(indices, indices_type) | |
subset = _safe_indexing(array, indices, axis=0) | |
assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type)) | |
def test_safe_indexing_2d_container_axis_1(array_type, indices_type, indices): | |
# validation of the indices | |
# we make a copy because indices is mutable and shared between tests | |
indices_converted = copy(indices) | |
if indices_type == "slice" and isinstance(indices[1], int): | |
indices_converted[1] += 1 | |
columns_name = ["col_0", "col_1", "col_2"] | |
array = _convert_container( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name | |
) | |
indices_converted = _convert_container(indices_converted, indices_type) | |
if isinstance(indices[0], str) and array_type != "dataframe": | |
err_msg = ( | |
"Specifying the columns using strings is only supported for dataframes" | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(array, indices_converted, axis=1) | |
else: | |
subset = _safe_indexing(array, indices_converted, axis=1) | |
assert_allclose_dense_sparse( | |
subset, _convert_container([[2, 3], [5, 6], [8, 9]], array_type) | |
) | |
def test_safe_indexing_2d_read_only_axis_1( | |
array_read_only, indices_read_only, array_type, indices_type, axis, expected_array | |
): | |
array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | |
if array_read_only: | |
array.setflags(write=False) | |
array = _convert_container(array, array_type) | |
indices = np.array([1, 2]) | |
if indices_read_only: | |
indices.setflags(write=False) | |
indices = _convert_container(indices, indices_type) | |
subset = _safe_indexing(array, indices, axis=axis) | |
assert_allclose_dense_sparse(subset, _convert_container(expected_array, array_type)) | |
def test_safe_indexing_1d_container_mask(array_type, indices_type): | |
indices = [False] + [True] * 2 + [False] * 6 | |
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) | |
indices = _convert_container(indices, indices_type) | |
subset = _safe_indexing(array, indices, axis=0) | |
assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type)) | |
def test_safe_indexing_2d_mask(array_type, indices_type, axis, expected_subset): | |
columns_name = ["col_0", "col_1", "col_2"] | |
array = _convert_container( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name | |
) | |
indices = [False, True, True] | |
indices = _convert_container(indices, indices_type) | |
subset = _safe_indexing(array, indices, axis=axis) | |
assert_allclose_dense_sparse( | |
subset, _convert_container(expected_subset, array_type) | |
) | |
def test_safe_indexing_2d_scalar_axis_0(array_type, expected_output_type): | |
array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) | |
indices = 2 | |
subset = _safe_indexing(array, indices, axis=0) | |
expected_array = _convert_container([7, 8, 9], expected_output_type) | |
assert_allclose_dense_sparse(subset, expected_array) | |
def test_safe_indexing_1d_scalar(array_type): | |
array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type) | |
indices = 2 | |
subset = _safe_indexing(array, indices, axis=0) | |
assert subset == 3 | |
def test_safe_indexing_2d_scalar_axis_1(array_type, expected_output_type, indices): | |
columns_name = ["col_0", "col_1", "col_2"] | |
array = _convert_container( | |
[[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name | |
) | |
if isinstance(indices, str) and array_type != "dataframe": | |
err_msg = ( | |
"Specifying the columns using strings is only supported for dataframes" | |
) | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(array, indices, axis=1) | |
else: | |
subset = _safe_indexing(array, indices, axis=1) | |
expected_output = [3, 6, 9] | |
if expected_output_type == "sparse": | |
# sparse matrix are keeping the 2D shape | |
expected_output = [[3], [6], [9]] | |
expected_array = _convert_container(expected_output, expected_output_type) | |
assert_allclose_dense_sparse(subset, expected_array) | |
def test_safe_indexing_None_axis_0(array_type): | |
X = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type) | |
X_subset = _safe_indexing(X, None, axis=0) | |
assert_allclose_dense_sparse(X_subset, X) | |
def test_safe_indexing_pandas_no_matching_cols_error(): | |
pd = pytest.importorskip("pandas") | |
err_msg = "No valid specification of the columns." | |
X = pd.DataFrame(X_toy) | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(X, [1.0], axis=1) | |
def test_safe_indexing_error_axis(axis): | |
with pytest.raises(ValueError, match="'axis' should be either 0"): | |
_safe_indexing(X_toy, [0, 1], axis=axis) | |
def test_safe_indexing_1d_array_error(X_constructor): | |
# check that we are raising an error if the array-like passed is 1D and | |
# we try to index on the 2nd dimension | |
X = list(range(5)) | |
if X_constructor == "array": | |
X_constructor = np.asarray(X) | |
elif X_constructor == "series": | |
pd = pytest.importorskip("pandas") | |
X_constructor = pd.Series(X) | |
err_msg = "'X' should be a 2D NumPy array, 2D sparse matrix or pandas" | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(X_constructor, [0, 1], axis=1) | |
def test_safe_indexing_container_axis_0_unsupported_type(): | |
indices = ["col_1", "col_2"] | |
array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] | |
err_msg = "String indexing is not supported with 'axis=0'" | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(array, indices, axis=0) | |
def test_safe_indexing_pandas_no_settingwithcopy_warning(): | |
# Using safe_indexing with an array-like indexer gives a copy of the | |
# DataFrame -> ensure it doesn't raise a warning if modified | |
pd = pytest.importorskip("pandas") | |
pd_version = parse_version(pd.__version__) | |
pd_base_version = parse_version(pd_version.base_version) | |
if pd_base_version >= parse_version("3"): | |
raise SkipTest("SettingWithCopyWarning has been removed in pandas 3.0.0.dev") | |
X = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}) | |
subset = _safe_indexing(X, [0, 1], axis=0) | |
if hasattr(pd.errors, "SettingWithCopyWarning"): | |
SettingWithCopyWarning = pd.errors.SettingWithCopyWarning | |
else: | |
# backward compatibility for pandas < 1.5 | |
SettingWithCopyWarning = pd.core.common.SettingWithCopyWarning | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", SettingWithCopyWarning) | |
subset.iloc[0, 0] = 10 | |
# The original dataframe is unaffected by the assignment on the subset: | |
assert X.iloc[0, 0] == 1 | |
def test_safe_indexing_list_axis_1_unsupported(indices): | |
"""Check that we raise a ValueError when axis=1 with input as list.""" | |
X = [[1, 2], [4, 5], [7, 8]] | |
err_msg = "axis=1 is not supported for lists" | |
with pytest.raises(ValueError, match=err_msg): | |
_safe_indexing(X, indices, axis=1) | |
def test_get_column_indices_error(key, err_msg): | |
pd = pytest.importorskip("pandas") | |
X_df = pd.DataFrame(X_toy, columns=["col_0", "col_1", "col_2"]) | |
with pytest.raises(ValueError, match=err_msg): | |
_get_column_indices(X_df, key) | |
def test_get_column_indices_pandas_nonunique_columns_error(key): | |
pd = pytest.importorskip("pandas") | |
toy = np.zeros((1, 5), dtype=int) | |
columns = ["col1", "col1", "col2", "col3", "col2"] | |
X = pd.DataFrame(toy, columns=columns) | |
err_msg = "Selected columns, {}, are not unique in dataframe".format(key) | |
with pytest.raises(ValueError) as exc_info: | |
_get_column_indices(X, key) | |
assert str(exc_info.value) == err_msg | |
def test_shuffle_on_ndim_equals_three(): | |
def to_tuple(A): # to make the inner arrays hashable | |
return tuple(tuple(tuple(C) for C in B) for B in A) | |
A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) | |
S = set(to_tuple(A)) | |
shuffle(A) # shouldn't raise a ValueError for dim = 3 | |
assert set(to_tuple(A)) == S | |
def test_shuffle_dont_convert_to_array(csc_container): | |
# Check that shuffle does not try to convert to numpy arrays with float | |
# dtypes can let any indexable datastructure pass-through. | |
a = ["a", "b", "c"] | |
b = np.array(["a", "b", "c"], dtype=object) | |
c = [1, 2, 3] | |
d = MockDataFrame(np.array([["a", 0], ["b", 1], ["c", 2]], dtype=object)) | |
e = csc_container(np.arange(6).reshape(3, 2)) | |
a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) | |
assert a_s == ["c", "b", "a"] | |
assert type(a_s) == list # noqa: E721 | |
assert_array_equal(b_s, ["c", "b", "a"]) | |
assert b_s.dtype == object | |
assert c_s == [3, 2, 1] | |
assert type(c_s) == list # noqa: E721 | |
assert_array_equal(d_s, np.array([["c", 2], ["b", 1], ["a", 0]], dtype=object)) | |
assert type(d_s) == MockDataFrame # noqa: E721 | |
assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) | |
def test_gen_even_slices(): | |
# check that gen_even_slices contains all samples | |
some_range = range(10) | |
joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) | |
assert_array_equal(some_range, joined_range) | |
def test_get_chunk_n_rows(row_bytes, max_n_rows, working_memory, expected): | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
actual = get_chunk_n_rows( | |
row_bytes=row_bytes, | |
max_n_rows=max_n_rows, | |
working_memory=working_memory, | |
) | |
assert actual == expected | |
assert type(actual) is type(expected) | |
with config_context(working_memory=working_memory): | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error", UserWarning) | |
actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows) | |
assert actual == expected | |
assert type(actual) is type(expected) | |
def test_get_chunk_n_rows_warns(): | |
"""Check that warning is raised when working_memory is too low.""" | |
row_bytes = 1024 * 1024 + 1 | |
max_n_rows = None | |
working_memory = 1 | |
expected = 1 | |
warn_msg = ( | |
"Could not adhere to working_memory config. Currently 1MiB, 2MiB required." | |
) | |
with pytest.warns(UserWarning, match=warn_msg): | |
actual = get_chunk_n_rows( | |
row_bytes=row_bytes, | |
max_n_rows=max_n_rows, | |
working_memory=working_memory, | |
) | |
assert actual == expected | |
assert type(actual) is type(expected) | |
with config_context(working_memory=working_memory): | |
with pytest.warns(UserWarning, match=warn_msg): | |
actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows) | |
assert actual == expected | |
assert type(actual) is type(expected) | |
def test_message_with_time(source, message, is_long, time, time_str): | |
out = _message_with_time(source, message, time) | |
if is_long: | |
assert len(out) > 70 | |
else: | |
assert len(out) == 70 | |
assert out.startswith("[" + source + "] ") | |
out = out[len(source) + 3 :] | |
assert out.endswith(time_str) | |
out = out[: -len(time_str)] | |
assert out.endswith(", total=") | |
out = out[: -len(", total=")] | |
assert out.endswith(message) | |
out = out[: -len(message)] | |
assert out.endswith(" ") | |
out = out[:-1] | |
if is_long: | |
assert not out | |
else: | |
assert list(set(out)) == ["."] | |
def test_print_elapsed_time(message, expected, capsys, monkeypatch): | |
monkeypatch.setattr(timeit, "default_timer", lambda: 0) | |
with _print_elapsed_time("ABC", message): | |
monkeypatch.setattr(timeit, "default_timer", lambda: 0.1) | |
assert capsys.readouterr().out == expected | |
def test_is_scalar_nan(value, result): | |
assert is_scalar_nan(value) is result | |
# make sure that we are returning a Python bool | |
assert isinstance(is_scalar_nan(value), bool) | |
def test_approximate_mode(): | |
"""Make sure sklearn.utils._approximate_mode returns valid | |
results for cases where "class_counts * n_draws" is enough | |
to overflow 32-bit signed integer. | |
Non-regression test for: | |
https://github.com/scikit-learn/scikit-learn/issues/20774 | |
""" | |
X = np.array([99000, 1000], dtype=np.int32) | |
ret = _approximate_mode(class_counts=X, n_draws=25000, rng=0) | |
# Draws 25% of the total population, so in this case a fair draw means: | |
# 25% * 99.000 = 24.750 | |
# 25% * 1.000 = 250 | |
assert_array_equal(ret, [24750, 250]) | |
def dummy_func(): | |
pass | |
def test_deprecation_joblib_api(tmpdir): | |
# Only parallel_backend and register_parallel_backend are not deprecated in | |
# sklearn.utils | |
from sklearn.utils import parallel_backend, register_parallel_backend | |
assert_no_warnings(parallel_backend, "loky", None) | |
assert_no_warnings(register_parallel_backend, "failing", None) | |
from sklearn.utils._joblib import joblib | |
del joblib.parallel.BACKENDS["failing"] | |
def test_to_object_array(sequence): | |
out = _to_object_array(sequence) | |
assert isinstance(out, np.ndarray) | |
assert out.dtype.kind == "O" | |
assert out.ndim == 1 | |
def test_safe_assign(array_type): | |
"""Check that `_safe_assign` works as expected.""" | |
rng = np.random.RandomState(0) | |
X_array = rng.randn(10, 5) | |
row_indexer = [1, 2] | |
values = rng.randn(len(row_indexer), X_array.shape[1]) | |
X = _convert_container(X_array, array_type) | |
_safe_assign(X, values, row_indexer=row_indexer) | |
assigned_portion = _safe_indexing(X, row_indexer, axis=0) | |
assert_allclose_dense_sparse( | |
assigned_portion, _convert_container(values, array_type) | |
) | |
column_indexer = [1, 2] | |
values = rng.randn(X_array.shape[0], len(column_indexer)) | |
X = _convert_container(X_array, array_type) | |
_safe_assign(X, values, column_indexer=column_indexer) | |
assigned_portion = _safe_indexing(X, column_indexer, axis=1) | |
assert_allclose_dense_sparse( | |
assigned_portion, _convert_container(values, array_type) | |
) | |
row_indexer, column_indexer = None, None | |
values = rng.randn(*X.shape) | |
X = _convert_container(X_array, array_type) | |
_safe_assign(X, values, column_indexer=column_indexer) | |
assert_allclose_dense_sparse(X, _convert_container(values, array_type)) | |
def test_get_column_indices_interchange(): | |
"""Check _get_column_indices for edge cases with the interchange""" | |
pd = pytest.importorskip("pandas", minversion="1.5") | |
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"]) | |
# Hide the fact that this is a pandas dataframe to trigger the dataframe protocol | |
# code path. | |
class MockDataFrame: | |
def __init__(self, df): | |
self._df = df | |
def __getattr__(self, name): | |
return getattr(self._df, name) | |
df_mocked = MockDataFrame(df) | |
key_results = [ | |
(slice(1, None), [1, 2]), | |
(slice(None, 2), [0, 1]), | |
(slice(1, 2), [1]), | |
(["b", "c"], [1, 2]), | |
(slice("a", "b"), [0, 1]), | |
(slice("a", None), [0, 1, 2]), | |
(slice(None, "a"), [0]), | |
(["c", "a"], [2, 0]), | |
([], []), | |
] | |
for key, result in key_results: | |
assert _get_column_indices(df_mocked, key) == result | |
msg = "A given column is not a column of the dataframe" | |
with pytest.raises(ValueError, match=msg): | |
_get_column_indices(df_mocked, ["not_a_column"]) | |
msg = "key.step must be 1 or None" | |
with pytest.raises(NotImplementedError, match=msg): | |
_get_column_indices(df_mocked, slice("a", None, 2)) | |
def test_polars_indexing(): | |
"""Check _safe_indexing for polars as expected.""" | |
pl = pytest.importorskip("polars", minversion="0.18.2") | |
df = pl.DataFrame( | |
{"a": [1, 2, 3, 4], "b": [4, 5, 6, 8], "c": [1, 4, 1, 10]}, orient="row" | |
) | |
from polars.testing import assert_frame_equal | |
str_keys = [["b"], ["a", "b"], ["b", "a", "c"], ["c"], ["a"]] | |
for key in str_keys: | |
out = _safe_indexing(df, key, axis=1) | |
assert_frame_equal(df[key], out) | |
bool_keys = [([True, False, True], ["a", "c"]), ([False, False, True], ["c"])] | |
for bool_key, str_key in bool_keys: | |
out = _safe_indexing(df, bool_key, axis=1) | |
assert_frame_equal(df[:, str_key], out) | |
int_keys = [([0, 1], ["a", "b"]), ([2], ["c"])] | |
for int_key, str_key in int_keys: | |
out = _safe_indexing(df, int_key, axis=1) | |
assert_frame_equal(df[:, str_key], out) | |
axis_0_keys = [[0, 1], [1, 3], [3, 2]] | |
for key in axis_0_keys: | |
out = _safe_indexing(df, key, axis=0) | |
assert_frame_equal(df[key], out) | |
def test__is_polars_df(): | |
"""Check that _is_polars_df return False for non-dataframe objects.""" | |
class LooksLikePolars: | |
def __init__(self): | |
self.columns = ["a", "b"] | |
self.schema = ["a", "b"] | |
assert not _is_polars_df(LooksLikePolars()) | |