peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/translate
/phrase_based.py
| # Natural Language Toolkit: Phrase Extraction Algorithm | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Authors: Liling Tan, Fredrik Hedman, Petra Barancikova | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| def extract( | |
| f_start, | |
| f_end, | |
| e_start, | |
| e_end, | |
| alignment, | |
| f_aligned, | |
| srctext, | |
| trgtext, | |
| srclen, | |
| trglen, | |
| max_phrase_length, | |
| ): | |
| """ | |
| This function checks for alignment point consistency and extracts | |
| phrases using the chunk of consistent phrases. | |
| A phrase pair (e, f ) is consistent with an alignment A if and only if: | |
| (i) No English words in the phrase pair are aligned to words outside it. | |
| βe i β e, (e i , f j ) β A β f j β f | |
| (ii) No Foreign words in the phrase pair are aligned to words outside it. | |
| βf j β f , (e i , f j ) β A β e i β e | |
| (iii) The phrase pair contains at least one alignment point. | |
| βe i β e Μ , f j β f Μ s.t. (e i , f j ) β A | |
| :type f_start: int | |
| :param f_start: Starting index of the possible foreign language phrases | |
| :type f_end: int | |
| :param f_end: End index of the possible foreign language phrases | |
| :type e_start: int | |
| :param e_start: Starting index of the possible source language phrases | |
| :type e_end: int | |
| :param e_end: End index of the possible source language phrases | |
| :type srctext: list | |
| :param srctext: The source language tokens, a list of string. | |
| :type trgtext: list | |
| :param trgtext: The target language tokens, a list of string. | |
| :type srclen: int | |
| :param srclen: The number of tokens in the source language tokens. | |
| :type trglen: int | |
| :param trglen: The number of tokens in the target language tokens. | |
| """ | |
| if f_end < 0: # 0-based indexing. | |
| return {} | |
| # Check if alignment points are consistent. | |
| for e, f in alignment: | |
| if (f_start <= f <= f_end) and (e < e_start or e > e_end): | |
| return {} | |
| # Add phrase pairs (incl. additional unaligned f) | |
| phrases = set() | |
| fs = f_start | |
| while True: | |
| fe = min(f_end, f_start + max_phrase_length - 1) | |
| while True: | |
| # add phrase pair ([e_start, e_end], [fs, fe]) to set E | |
| # Need to +1 in range to include the end-point. | |
| src_phrase = " ".join(srctext[e_start : e_end + 1]) | |
| trg_phrase = " ".join(trgtext[fs : fe + 1]) | |
| # Include more data for later ordering. | |
| phrases.add(((e_start, e_end + 1), (fs, fe + 1), src_phrase, trg_phrase)) | |
| fe += 1 | |
| if fe in f_aligned or fe >= trglen: | |
| break | |
| fs -= 1 | |
| if fs in f_aligned or fs < 0: | |
| break | |
| return phrases | |
| def phrase_extraction(srctext, trgtext, alignment, max_phrase_length=0): | |
| """ | |
| Phrase extraction algorithm extracts all consistent phrase pairs from | |
| a word-aligned sentence pair. | |
| The idea is to loop over all possible source language (e) phrases and find | |
| the minimal foreign phrase (f) that matches each of them. Matching is done | |
| by identifying all alignment points for the source phrase and finding the | |
| shortest foreign phrase that includes all the foreign counterparts for the | |
| source words. | |
| In short, a phrase alignment has to | |
| (a) contain all alignment points for all covered words | |
| (b) contain at least one alignment point | |
| >>> srctext = "michael assumes that he will stay in the house" | |
| >>> trgtext = "michael geht davon aus , dass er im haus bleibt" | |
| >>> alignment = [(0,0), (1,1), (1,2), (1,3), (2,5), (3,6), (4,9), | |
| ... (5,9), (6,7), (7,7), (8,8)] | |
| >>> phrases = phrase_extraction(srctext, trgtext, alignment) | |
| >>> for i in sorted(phrases): | |
| ... print(i) | |
| ... | |
| ((0, 1), (0, 1), 'michael', 'michael') | |
| ((0, 2), (0, 4), 'michael assumes', 'michael geht davon aus') | |
| ((0, 2), (0, 5), 'michael assumes', 'michael geht davon aus ,') | |
| ((0, 3), (0, 6), 'michael assumes that', 'michael geht davon aus , dass') | |
| ((0, 4), (0, 7), 'michael assumes that he', 'michael geht davon aus , dass er') | |
| ((0, 9), (0, 10), 'michael assumes that he will stay in the house', 'michael geht davon aus , dass er im haus bleibt') | |
| ((1, 2), (1, 4), 'assumes', 'geht davon aus') | |
| ((1, 2), (1, 5), 'assumes', 'geht davon aus ,') | |
| ((1, 3), (1, 6), 'assumes that', 'geht davon aus , dass') | |
| ((1, 4), (1, 7), 'assumes that he', 'geht davon aus , dass er') | |
| ((1, 9), (1, 10), 'assumes that he will stay in the house', 'geht davon aus , dass er im haus bleibt') | |
| ((2, 3), (4, 6), 'that', ', dass') | |
| ((2, 3), (5, 6), 'that', 'dass') | |
| ((2, 4), (4, 7), 'that he', ', dass er') | |
| ((2, 4), (5, 7), 'that he', 'dass er') | |
| ((2, 9), (4, 10), 'that he will stay in the house', ', dass er im haus bleibt') | |
| ((2, 9), (5, 10), 'that he will stay in the house', 'dass er im haus bleibt') | |
| ((3, 4), (6, 7), 'he', 'er') | |
| ((3, 9), (6, 10), 'he will stay in the house', 'er im haus bleibt') | |
| ((4, 6), (9, 10), 'will stay', 'bleibt') | |
| ((4, 9), (7, 10), 'will stay in the house', 'im haus bleibt') | |
| ((6, 8), (7, 8), 'in the', 'im') | |
| ((6, 9), (7, 9), 'in the house', 'im haus') | |
| ((8, 9), (8, 9), 'house', 'haus') | |
| :type srctext: str | |
| :param srctext: The sentence string from the source language. | |
| :type trgtext: str | |
| :param trgtext: The sentence string from the target language. | |
| :type alignment: list(tuple) | |
| :param alignment: The word alignment outputs as list of tuples, where | |
| the first elements of tuples are the source words' indices and | |
| second elements are the target words' indices. This is also the output | |
| format of nltk.translate.ibm1 | |
| :rtype: list(tuple) | |
| :return: A list of tuples, each element in a list is a phrase and each | |
| phrase is a tuple made up of (i) its source location, (ii) its target | |
| location, (iii) the source phrase and (iii) the target phrase. The phrase | |
| list of tuples represents all the possible phrases extracted from the | |
| word alignments. | |
| :type max_phrase_length: int | |
| :param max_phrase_length: maximal phrase length, if 0 or not specified | |
| it is set to a length of the longer sentence (srctext or trgtext). | |
| """ | |
| srctext = srctext.split() # e | |
| trgtext = trgtext.split() # f | |
| srclen = len(srctext) # len(e) | |
| trglen = len(trgtext) # len(f) | |
| # Keeps an index of which source/target words that are aligned. | |
| f_aligned = [j for _, j in alignment] | |
| max_phrase_length = max_phrase_length or max(srclen, trglen) | |
| # set of phrase pairs BP | |
| bp = set() | |
| for e_start in range(srclen): | |
| max_idx = min(srclen, e_start + max_phrase_length) | |
| for e_end in range(e_start, max_idx): | |
| # // find the minimally matching foreign phrase | |
| # (f start , f end ) = ( length(f), 0 ) | |
| # f_start β [0, len(f) - 1]; f_end β [0, len(f) - 1] | |
| f_start, f_end = trglen - 1, -1 # 0-based indexing | |
| for e, f in alignment: | |
| if e_start <= e <= e_end: | |
| f_start = min(f, f_start) | |
| f_end = max(f, f_end) | |
| # add extract (f start , f end , e start , e end ) to set BP | |
| phrases = extract( | |
| f_start, | |
| f_end, | |
| e_start, | |
| e_end, | |
| alignment, | |
| f_aligned, | |
| srctext, | |
| trgtext, | |
| srclen, | |
| trglen, | |
| max_phrase_length, | |
| ) | |
| if phrases: | |
| bp.update(phrases) | |
| return bp | |