peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_basic.py
| # | |
| # Author: Travis Oliphant, 2002 | |
| # | |
| import operator | |
| import numpy as np | |
| import math | |
| import warnings | |
| from collections import defaultdict | |
| from heapq import heapify, heappop | |
| from numpy import (pi, asarray, floor, isscalar, iscomplex, sqrt, where, mgrid, | |
| sin, place, issubdtype, extract, inexact, nan, zeros, sinc) | |
| from . import _ufuncs | |
| from ._ufuncs import (mathieu_a, mathieu_b, iv, jv, gamma, | |
| psi, hankel1, hankel2, yv, kv, poch, binom, | |
| _stirling2_inexact) | |
| from . import _specfun | |
| from ._comb import _comb_int | |
| from scipy._lib.deprecation import _NoValue, _deprecate_positional_args | |
| __all__ = [ | |
| 'ai_zeros', | |
| 'assoc_laguerre', | |
| 'bei_zeros', | |
| 'beip_zeros', | |
| 'ber_zeros', | |
| 'bernoulli', | |
| 'berp_zeros', | |
| 'bi_zeros', | |
| 'clpmn', | |
| 'comb', | |
| 'digamma', | |
| 'diric', | |
| 'erf_zeros', | |
| 'euler', | |
| 'factorial', | |
| 'factorial2', | |
| 'factorialk', | |
| 'fresnel_zeros', | |
| 'fresnelc_zeros', | |
| 'fresnels_zeros', | |
| 'h1vp', | |
| 'h2vp', | |
| 'ivp', | |
| 'jn_zeros', | |
| 'jnjnp_zeros', | |
| 'jnp_zeros', | |
| 'jnyn_zeros', | |
| 'jvp', | |
| 'kei_zeros', | |
| 'keip_zeros', | |
| 'kelvin_zeros', | |
| 'ker_zeros', | |
| 'kerp_zeros', | |
| 'kvp', | |
| 'lmbda', | |
| 'lpmn', | |
| 'lpn', | |
| 'lqmn', | |
| 'lqn', | |
| 'mathieu_even_coef', | |
| 'mathieu_odd_coef', | |
| 'obl_cv_seq', | |
| 'pbdn_seq', | |
| 'pbdv_seq', | |
| 'pbvv_seq', | |
| 'perm', | |
| 'polygamma', | |
| 'pro_cv_seq', | |
| 'riccati_jn', | |
| 'riccati_yn', | |
| 'sinc', | |
| 'stirling2', | |
| 'y0_zeros', | |
| 'y1_zeros', | |
| 'y1p_zeros', | |
| 'yn_zeros', | |
| 'ynp_zeros', | |
| 'yvp', | |
| 'zeta' | |
| ] | |
| # mapping k to last n such that factorialk(n, k) < np.iinfo(np.int64).max | |
| _FACTORIALK_LIMITS_64BITS = {1: 20, 2: 33, 3: 44, 4: 54, 5: 65, | |
| 6: 74, 7: 84, 8: 93, 9: 101} | |
| # mapping k to last n such that factorialk(n, k) < np.iinfo(np.int32).max | |
| _FACTORIALK_LIMITS_32BITS = {1: 12, 2: 19, 3: 25, 4: 31, 5: 37, | |
| 6: 43, 7: 47, 8: 51, 9: 56} | |
| def _nonneg_int_or_fail(n, var_name, strict=True): | |
| try: | |
| if strict: | |
| # Raises an exception if float | |
| n = operator.index(n) | |
| elif n == floor(n): | |
| n = int(n) | |
| else: | |
| raise ValueError() | |
| if n < 0: | |
| raise ValueError() | |
| except (ValueError, TypeError) as err: | |
| raise err.__class__(f"{var_name} must be a non-negative integer") from err | |
| return n | |
| def diric(x, n): | |
| """Periodic sinc function, also called the Dirichlet function. | |
| The Dirichlet function is defined as:: | |
| diric(x, n) = sin(x * n/2) / (n * sin(x / 2)), | |
| where `n` is a positive integer. | |
| Parameters | |
| ---------- | |
| x : array_like | |
| Input data | |
| n : int | |
| Integer defining the periodicity. | |
| Returns | |
| ------- | |
| diric : ndarray | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy import special | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201) | |
| >>> plt.figure(figsize=(8, 8)); | |
| >>> for idx, n in enumerate([2, 3, 4, 9]): | |
| ... plt.subplot(2, 2, idx+1) | |
| ... plt.plot(x, special.diric(x, n)) | |
| ... plt.title('diric, n={}'.format(n)) | |
| >>> plt.show() | |
| The following example demonstrates that `diric` gives the magnitudes | |
| (modulo the sign and scaling) of the Fourier coefficients of a | |
| rectangular pulse. | |
| Suppress output of values that are effectively 0: | |
| >>> np.set_printoptions(suppress=True) | |
| Create a signal `x` of length `m` with `k` ones: | |
| >>> m = 8 | |
| >>> k = 3 | |
| >>> x = np.zeros(m) | |
| >>> x[:k] = 1 | |
| Use the FFT to compute the Fourier transform of `x`, and | |
| inspect the magnitudes of the coefficients: | |
| >>> np.abs(np.fft.fft(x)) | |
| array([ 3. , 2.41421356, 1. , 0.41421356, 1. , | |
| 0.41421356, 1. , 2.41421356]) | |
| Now find the same values (up to sign) using `diric`. We multiply | |
| by `k` to account for the different scaling conventions of | |
| `numpy.fft.fft` and `diric`: | |
| >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False) | |
| >>> k * special.diric(theta, k) | |
| array([ 3. , 2.41421356, 1. , -0.41421356, -1. , | |
| -0.41421356, 1. , 2.41421356]) | |
| """ | |
| x, n = asarray(x), asarray(n) | |
| n = asarray(n + (x-x)) | |
| x = asarray(x + (n-n)) | |
| if issubdtype(x.dtype, inexact): | |
| ytype = x.dtype | |
| else: | |
| ytype = float | |
| y = zeros(x.shape, ytype) | |
| # empirical minval for 32, 64 or 128 bit float computations | |
| # where sin(x/2) < minval, result is fixed at +1 or -1 | |
| if np.finfo(ytype).eps < 1e-18: | |
| minval = 1e-11 | |
| elif np.finfo(ytype).eps < 1e-15: | |
| minval = 1e-7 | |
| else: | |
| minval = 1e-3 | |
| mask1 = (n <= 0) | (n != floor(n)) | |
| place(y, mask1, nan) | |
| x = x / 2 | |
| denom = sin(x) | |
| mask2 = (1-mask1) & (abs(denom) < minval) | |
| xsub = extract(mask2, x) | |
| nsub = extract(mask2, n) | |
| zsub = xsub / pi | |
| place(y, mask2, pow(-1, np.round(zsub)*(nsub-1))) | |
| mask = (1-mask1) & (1-mask2) | |
| xsub = extract(mask, x) | |
| nsub = extract(mask, n) | |
| dsub = extract(mask, denom) | |
| place(y, mask, sin(nsub*xsub)/(nsub*dsub)) | |
| return y | |
| def jnjnp_zeros(nt): | |
| """Compute zeros of integer-order Bessel functions Jn and Jn'. | |
| Results are arranged in order of the magnitudes of the zeros. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number (<=1200) of zeros to compute | |
| Returns | |
| ------- | |
| zo[l-1] : ndarray | |
| Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`. | |
| n[l-1] : ndarray | |
| Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. | |
| m[l-1] : ndarray | |
| Serial number of the zeros of Jn(x) or Jn'(x) associated | |
| with lth zero. Of length `nt`. | |
| t[l-1] : ndarray | |
| 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of | |
| length `nt`. | |
| See Also | |
| -------- | |
| jn_zeros, jnp_zeros : to get separated arrays of zeros. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200): | |
| raise ValueError("Number must be integer <= 1200.") | |
| nt = int(nt) | |
| n, m, t, zo = _specfun.jdzo(nt) | |
| return zo[1:nt+1], n[:nt], m[:nt], t[:nt] | |
| def jnyn_zeros(n, nt): | |
| """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x). | |
| Returns 4 arrays of length `nt`, corresponding to the first `nt` | |
| zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. The zeros | |
| are returned in ascending order. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of the Bessel functions | |
| nt : int | |
| Number (<=1200) of zeros to compute | |
| Returns | |
| ------- | |
| Jn : ndarray | |
| First `nt` zeros of Jn | |
| Jnp : ndarray | |
| First `nt` zeros of Jn' | |
| Yn : ndarray | |
| First `nt` zeros of Yn | |
| Ynp : ndarray | |
| First `nt` zeros of Yn' | |
| See Also | |
| -------- | |
| jn_zeros, jnp_zeros, yn_zeros, ynp_zeros | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first three roots of :math:`J_1`, :math:`J_1'`, | |
| :math:`Y_1` and :math:`Y_1'`. | |
| >>> from scipy.special import jnyn_zeros | |
| >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3) | |
| >>> jn_roots, yn_roots | |
| (array([ 3.83170597, 7.01558667, 10.17346814]), | |
| array([2.19714133, 5.42968104, 8.59600587])) | |
| Plot :math:`J_1`, :math:`J_1'`, :math:`Y_1`, :math:`Y_1'` and their roots. | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import jnyn_zeros, jvp, jn, yvp, yn | |
| >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3) | |
| >>> fig, ax = plt.subplots() | |
| >>> xmax= 11 | |
| >>> x = np.linspace(0, xmax) | |
| >>> x[0] += 1e-15 | |
| >>> ax.plot(x, jn(1, x), label=r"$J_1$", c='r') | |
| >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$", c='b') | |
| >>> ax.plot(x, yn(1, x), label=r"$Y_1$", c='y') | |
| >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$", c='c') | |
| >>> zeros = np.zeros((3, )) | |
| >>> ax.scatter(jn_roots, zeros, s=30, c='r', zorder=5, | |
| ... label=r"$J_1$ roots") | |
| >>> ax.scatter(jnp_roots, zeros, s=30, c='b', zorder=5, | |
| ... label=r"$J_1'$ roots") | |
| >>> ax.scatter(yn_roots, zeros, s=30, c='y', zorder=5, | |
| ... label=r"$Y_1$ roots") | |
| >>> ax.scatter(ynp_roots, zeros, s=30, c='c', zorder=5, | |
| ... label=r"$Y_1'$ roots") | |
| >>> ax.hlines(0, 0, xmax, color='k') | |
| >>> ax.set_ylim(-0.6, 0.6) | |
| >>> ax.set_xlim(0, xmax) | |
| >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75)) | |
| >>> plt.tight_layout() | |
| >>> plt.show() | |
| """ | |
| if not (isscalar(nt) and isscalar(n)): | |
| raise ValueError("Arguments must be scalars.") | |
| if (floor(n) != n) or (floor(nt) != nt): | |
| raise ValueError("Arguments must be integers.") | |
| if (nt <= 0): | |
| raise ValueError("nt > 0") | |
| return _specfun.jyzo(abs(n), nt) | |
| def jn_zeros(n, nt): | |
| r"""Compute zeros of integer-order Bessel functions Jn. | |
| Compute `nt` zeros of the Bessel functions :math:`J_n(x)` on the | |
| interval :math:`(0, \infty)`. The zeros are returned in ascending | |
| order. Note that this interval excludes the zero at :math:`x = 0` | |
| that exists for :math:`n > 0`. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of Bessel function | |
| nt : int | |
| Number of zeros to return | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Bessel function. | |
| See Also | |
| -------- | |
| jv: Real-order Bessel functions of the first kind | |
| jnp_zeros: Zeros of :math:`Jn'` | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first four positive roots of :math:`J_3`. | |
| >>> from scipy.special import jn_zeros | |
| >>> jn_zeros(3, 4) | |
| array([ 6.3801619 , 9.76102313, 13.01520072, 16.22346616]) | |
| Plot :math:`J_3` and its first four positive roots. Note | |
| that the root located at 0 is not returned by `jn_zeros`. | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import jn, jn_zeros | |
| >>> j3_roots = jn_zeros(3, 4) | |
| >>> xmax = 18 | |
| >>> xmin = -1 | |
| >>> x = np.linspace(xmin, xmax, 500) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, jn(3, x), label=r'$J_3$') | |
| >>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r', | |
| ... label=r"$J_3$_Zeros", zorder=5) | |
| >>> ax.scatter(0, 0, s=30, c='k', | |
| ... label=r"Root at 0", zorder=5) | |
| >>> ax.hlines(0, 0, xmax, color='k') | |
| >>> ax.set_xlim(xmin, xmax) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| return jnyn_zeros(n, nt)[0] | |
| def jnp_zeros(n, nt): | |
| r"""Compute zeros of integer-order Bessel function derivatives Jn'. | |
| Compute `nt` zeros of the functions :math:`J_n'(x)` on the | |
| interval :math:`(0, \infty)`. The zeros are returned in ascending | |
| order. Note that this interval excludes the zero at :math:`x = 0` | |
| that exists for :math:`n > 1`. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of Bessel function | |
| nt : int | |
| Number of zeros to return | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Bessel function. | |
| See Also | |
| -------- | |
| jvp: Derivatives of integer-order Bessel functions of the first kind | |
| jv: Float-order Bessel functions of the first kind | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first four roots of :math:`J_2'`. | |
| >>> from scipy.special import jnp_zeros | |
| >>> jnp_zeros(2, 4) | |
| array([ 3.05423693, 6.70613319, 9.96946782, 13.17037086]) | |
| As `jnp_zeros` yields the roots of :math:`J_n'`, it can be used to | |
| compute the locations of the peaks of :math:`J_n`. Plot | |
| :math:`J_2`, :math:`J_2'` and the locations of the roots of :math:`J_2'`. | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import jn, jnp_zeros, jvp | |
| >>> j2_roots = jnp_zeros(2, 4) | |
| >>> xmax = 15 | |
| >>> x = np.linspace(0, xmax, 500) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, jn(2, x), label=r'$J_2$') | |
| >>> ax.plot(x, jvp(2, x, 1), label=r"$J_2'$") | |
| >>> ax.hlines(0, 0, xmax, color='k') | |
| >>> ax.scatter(j2_roots, np.zeros((4, )), s=30, c='r', | |
| ... label=r"Roots of $J_2'$", zorder=5) | |
| >>> ax.set_ylim(-0.4, 0.8) | |
| >>> ax.set_xlim(0, xmax) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| return jnyn_zeros(n, nt)[1] | |
| def yn_zeros(n, nt): | |
| r"""Compute zeros of integer-order Bessel function Yn(x). | |
| Compute `nt` zeros of the functions :math:`Y_n(x)` on the interval | |
| :math:`(0, \infty)`. The zeros are returned in ascending order. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of Bessel function | |
| nt : int | |
| Number of zeros to return | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Bessel function. | |
| See Also | |
| -------- | |
| yn: Bessel function of the second kind for integer order | |
| yv: Bessel function of the second kind for real order | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first four roots of :math:`Y_2`. | |
| >>> from scipy.special import yn_zeros | |
| >>> yn_zeros(2, 4) | |
| array([ 3.38424177, 6.79380751, 10.02347798, 13.20998671]) | |
| Plot :math:`Y_2` and its first four roots. | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import yn, yn_zeros | |
| >>> xmin = 2 | |
| >>> xmax = 15 | |
| >>> x = np.linspace(xmin, xmax, 500) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.hlines(0, xmin, xmax, color='k') | |
| >>> ax.plot(x, yn(2, x), label=r'$Y_2$') | |
| >>> ax.scatter(yn_zeros(2, 4), np.zeros((4, )), s=30, c='r', | |
| ... label='Roots', zorder=5) | |
| >>> ax.set_ylim(-0.4, 0.4) | |
| >>> ax.set_xlim(xmin, xmax) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| return jnyn_zeros(n, nt)[2] | |
| def ynp_zeros(n, nt): | |
| r"""Compute zeros of integer-order Bessel function derivatives Yn'(x). | |
| Compute `nt` zeros of the functions :math:`Y_n'(x)` on the | |
| interval :math:`(0, \infty)`. The zeros are returned in ascending | |
| order. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of Bessel function | |
| nt : int | |
| Number of zeros to return | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Bessel derivative function. | |
| See Also | |
| -------- | |
| yvp | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first four roots of the first derivative of the | |
| Bessel function of second kind for order 0 :math:`Y_0'`. | |
| >>> from scipy.special import ynp_zeros | |
| >>> ynp_zeros(0, 4) | |
| array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483]) | |
| Plot :math:`Y_0`, :math:`Y_0'` and confirm visually that the roots of | |
| :math:`Y_0'` are located at local extrema of :math:`Y_0`. | |
| >>> import numpy as np | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import yn, ynp_zeros, yvp | |
| >>> zeros = ynp_zeros(0, 4) | |
| >>> xmax = 13 | |
| >>> x = np.linspace(0, xmax, 500) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, yn(0, x), label=r'$Y_0$') | |
| >>> ax.plot(x, yvp(0, x, 1), label=r"$Y_0'$") | |
| >>> ax.scatter(zeros, np.zeros((4, )), s=30, c='r', | |
| ... label=r"Roots of $Y_0'$", zorder=5) | |
| >>> for root in zeros: | |
| ... y0_extremum = yn(0, root) | |
| ... lower = min(0, y0_extremum) | |
| ... upper = max(0, y0_extremum) | |
| ... ax.vlines(root, lower, upper, color='r') | |
| >>> ax.hlines(0, 0, xmax, color='k') | |
| >>> ax.set_ylim(-0.6, 0.6) | |
| >>> ax.set_xlim(0, xmax) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| return jnyn_zeros(n, nt)[3] | |
| def y0_zeros(nt, complex=False): | |
| """Compute nt zeros of Bessel function Y0(z), and derivative at each zero. | |
| The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to return | |
| complex : bool, default False | |
| Set to False to return only the real zeros; set to True to return only | |
| the complex zeros with negative real part and positive imaginary part. | |
| Note that the complex conjugates of the latter are also zeros of the | |
| function, but are not returned by this routine. | |
| Returns | |
| ------- | |
| z0n : ndarray | |
| Location of nth zero of Y0(z) | |
| y0pz0n : ndarray | |
| Value of derivative Y0'(z0) for nth zero | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first 4 real roots and the derivatives at the roots of | |
| :math:`Y_0`: | |
| >>> import numpy as np | |
| >>> from scipy.special import y0_zeros | |
| >>> zeros, grads = y0_zeros(4) | |
| >>> with np.printoptions(precision=5): | |
| ... print(f"Roots: {zeros}") | |
| ... print(f"Gradients: {grads}") | |
| Roots: [ 0.89358+0.j 3.95768+0.j 7.08605+0.j 10.22235+0.j] | |
| Gradients: [-0.87942+0.j 0.40254+0.j -0.3001 +0.j 0.2497 +0.j] | |
| Plot the real part of :math:`Y_0` and the first four computed roots. | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import y0 | |
| >>> xmin = 0 | |
| >>> xmax = 11 | |
| >>> x = np.linspace(xmin, xmax, 500) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.hlines(0, xmin, xmax, color='k') | |
| >>> ax.plot(x, y0(x), label=r'$Y_0$') | |
| >>> zeros, grads = y0_zeros(4) | |
| >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r', | |
| ... label=r'$Y_0$_zeros', zorder=5) | |
| >>> ax.set_ylim(-0.5, 0.6) | |
| >>> ax.set_xlim(xmin, xmax) | |
| >>> plt.legend(ncol=2) | |
| >>> plt.show() | |
| Compute the first 4 complex roots and the derivatives at the roots of | |
| :math:`Y_0` by setting ``complex=True``: | |
| >>> y0_zeros(4, True) | |
| (array([ -2.40301663+0.53988231j, -5.5198767 +0.54718001j, | |
| -8.6536724 +0.54841207j, -11.79151203+0.54881912j]), | |
| array([ 0.10074769-0.88196771j, -0.02924642+0.5871695j , | |
| 0.01490806-0.46945875j, -0.00937368+0.40230454j])) | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("Arguments must be scalar positive integer.") | |
| kf = 0 | |
| kc = not complex | |
| return _specfun.cyzo(nt, kf, kc) | |
| def y1_zeros(nt, complex=False): | |
| """Compute nt zeros of Bessel function Y1(z), and derivative at each zero. | |
| The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to return | |
| complex : bool, default False | |
| Set to False to return only the real zeros; set to True to return only | |
| the complex zeros with negative real part and positive imaginary part. | |
| Note that the complex conjugates of the latter are also zeros of the | |
| function, but are not returned by this routine. | |
| Returns | |
| ------- | |
| z1n : ndarray | |
| Location of nth zero of Y1(z) | |
| y1pz1n : ndarray | |
| Value of derivative Y1'(z1) for nth zero | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first 4 real roots and the derivatives at the roots of | |
| :math:`Y_1`: | |
| >>> import numpy as np | |
| >>> from scipy.special import y1_zeros | |
| >>> zeros, grads = y1_zeros(4) | |
| >>> with np.printoptions(precision=5): | |
| ... print(f"Roots: {zeros}") | |
| ... print(f"Gradients: {grads}") | |
| Roots: [ 2.19714+0.j 5.42968+0.j 8.59601+0.j 11.74915+0.j] | |
| Gradients: [ 0.52079+0.j -0.34032+0.j 0.27146+0.j -0.23246+0.j] | |
| Extract the real parts: | |
| >>> realzeros = zeros.real | |
| >>> realzeros | |
| array([ 2.19714133, 5.42968104, 8.59600587, 11.74915483]) | |
| Plot :math:`Y_1` and the first four computed roots. | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import y1 | |
| >>> xmin = 0 | |
| >>> xmax = 13 | |
| >>> x = np.linspace(xmin, xmax, 500) | |
| >>> zeros, grads = y1_zeros(4) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.hlines(0, xmin, xmax, color='k') | |
| >>> ax.plot(x, y1(x), label=r'$Y_1$') | |
| >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r', | |
| ... label=r'$Y_1$_zeros', zorder=5) | |
| >>> ax.set_ylim(-0.5, 0.5) | |
| >>> ax.set_xlim(xmin, xmax) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| Compute the first 4 complex roots and the derivatives at the roots of | |
| :math:`Y_1` by setting ``complex=True``: | |
| >>> y1_zeros(4, True) | |
| (array([ -0.50274327+0.78624371j, -3.83353519+0.56235654j, | |
| -7.01590368+0.55339305j, -10.17357383+0.55127339j]), | |
| array([-0.45952768+1.31710194j, 0.04830191-0.69251288j, | |
| -0.02012695+0.51864253j, 0.011614 -0.43203296j])) | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("Arguments must be scalar positive integer.") | |
| kf = 1 | |
| kc = not complex | |
| return _specfun.cyzo(nt, kf, kc) | |
| def y1p_zeros(nt, complex=False): | |
| """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero. | |
| The values are given by Y1(z1) at each z1 where Y1'(z1)=0. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to return | |
| complex : bool, default False | |
| Set to False to return only the real zeros; set to True to return only | |
| the complex zeros with negative real part and positive imaginary part. | |
| Note that the complex conjugates of the latter are also zeros of the | |
| function, but are not returned by this routine. | |
| Returns | |
| ------- | |
| z1pn : ndarray | |
| Location of nth zero of Y1'(z) | |
| y1z1pn : ndarray | |
| Value of derivative Y1(z1) for nth zero | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| Compute the first four roots of :math:`Y_1'` and the values of | |
| :math:`Y_1` at these roots. | |
| >>> import numpy as np | |
| >>> from scipy.special import y1p_zeros | |
| >>> y1grad_roots, y1_values = y1p_zeros(4) | |
| >>> with np.printoptions(precision=5): | |
| ... print(f"Y1' Roots: {y1grad_roots.real}") | |
| ... print(f"Y1 values: {y1_values.real}") | |
| Y1' Roots: [ 3.68302 6.9415 10.1234 13.28576] | |
| Y1 values: [ 0.41673 -0.30317 0.25091 -0.21897] | |
| `y1p_zeros` can be used to calculate the extremal points of :math:`Y_1` | |
| directly. Here we plot :math:`Y_1` and the first four extrema. | |
| >>> import matplotlib.pyplot as plt | |
| >>> from scipy.special import y1, yvp | |
| >>> y1_roots, y1_values_at_roots = y1p_zeros(4) | |
| >>> real_roots = y1_roots.real | |
| >>> xmax = 15 | |
| >>> x = np.linspace(0, xmax, 500) | |
| >>> x[0] += 1e-15 | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, y1(x), label=r'$Y_1$') | |
| >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$") | |
| >>> ax.scatter(real_roots, np.zeros((4, )), s=30, c='r', | |
| ... label=r"Roots of $Y_1'$", zorder=5) | |
| >>> ax.scatter(real_roots, y1_values_at_roots.real, s=30, c='k', | |
| ... label=r"Extrema of $Y_1$", zorder=5) | |
| >>> ax.hlines(0, 0, xmax, color='k') | |
| >>> ax.set_ylim(-0.5, 0.5) | |
| >>> ax.set_xlim(0, xmax) | |
| >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75)) | |
| >>> plt.tight_layout() | |
| >>> plt.show() | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("Arguments must be scalar positive integer.") | |
| kf = 2 | |
| kc = not complex | |
| return _specfun.cyzo(nt, kf, kc) | |
| def _bessel_diff_formula(v, z, n, L, phase): | |
| # from AMS55. | |
| # L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1 | |
| # L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1 | |
| # For K, you can pull out the exp((v-k)*pi*i) into the caller | |
| v = asarray(v) | |
| p = 1.0 | |
| s = L(v-n, z) | |
| for i in range(1, n+1): | |
| p = phase * (p * (n-i+1)) / i # = choose(k, i) | |
| s += p*L(v-n + i*2, z) | |
| return s / (2.**n) | |
| def jvp(v, z, n=1): | |
| """Compute derivatives of Bessel functions of the first kind. | |
| Compute the nth derivative of the Bessel function `Jv` with | |
| respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like or float | |
| Order of Bessel function | |
| z : complex | |
| Argument at which to evaluate the derivative; can be real or | |
| complex. | |
| n : int, default 1 | |
| Order of derivative. For 0 returns the Bessel function `jv` itself. | |
| Returns | |
| ------- | |
| scalar or ndarray | |
| Values of the derivative of the Bessel function. | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.6.7 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.6.E7 | |
| Examples | |
| -------- | |
| Compute the Bessel function of the first kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import jvp | |
| >>> jvp(0, 1, 0), jvp(0, 1, 1), jvp(0, 1, 2) | |
| (0.7651976865579666, -0.44005058574493355, -0.3251471008130331) | |
| Compute the first derivative of the Bessel function of the first | |
| kind for several orders at 1 by providing an array for `v`. | |
| >>> jvp([0, 1, 2], 1, 1) | |
| array([-0.44005059, 0.3251471 , 0.21024362]) | |
| Compute the first derivative of the Bessel function of the first | |
| kind of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0., 1.5, 3.]) | |
| >>> jvp(0, points, 1) | |
| array([-0. , -0.55793651, -0.33905896]) | |
| Plot the Bessel function of the first kind of order 1 and its | |
| first three derivatives. | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = np.linspace(-10, 10, 1000) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, jvp(1, x, 0), label=r"$J_1$") | |
| >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$") | |
| >>> ax.plot(x, jvp(1, x, 2), label=r"$J_1''$") | |
| >>> ax.plot(x, jvp(1, x, 3), label=r"$J_1'''$") | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return jv(v, z) | |
| else: | |
| return _bessel_diff_formula(v, z, n, jv, -1) | |
| def yvp(v, z, n=1): | |
| """Compute derivatives of Bessel functions of the second kind. | |
| Compute the nth derivative of the Bessel function `Yv` with | |
| respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like of float | |
| Order of Bessel function | |
| z : complex | |
| Argument at which to evaluate the derivative | |
| n : int, default 1 | |
| Order of derivative. For 0 returns the BEssel function `yv` | |
| Returns | |
| ------- | |
| scalar or ndarray | |
| nth derivative of the Bessel function. | |
| See Also | |
| -------- | |
| yv : Bessel functions of the second kind | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.6.7 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.6.E7 | |
| Examples | |
| -------- | |
| Compute the Bessel function of the second kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import yvp | |
| >>> yvp(0, 1, 0), yvp(0, 1, 1), yvp(0, 1, 2) | |
| (0.088256964215677, 0.7812128213002889, -0.8694697855159659) | |
| Compute the first derivative of the Bessel function of the second | |
| kind for several orders at 1 by providing an array for `v`. | |
| >>> yvp([0, 1, 2], 1, 1) | |
| array([0.78121282, 0.86946979, 2.52015239]) | |
| Compute the first derivative of the Bessel function of the | |
| second kind of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0.5, 1.5, 3.]) | |
| >>> yvp(0, points, 1) | |
| array([ 1.47147239, 0.41230863, -0.32467442]) | |
| Plot the Bessel function of the second kind of order 1 and its | |
| first three derivatives. | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = np.linspace(0, 5, 1000) | |
| >>> x[0] += 1e-15 | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, yvp(1, x, 0), label=r"$Y_1$") | |
| >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$") | |
| >>> ax.plot(x, yvp(1, x, 2), label=r"$Y_1''$") | |
| >>> ax.plot(x, yvp(1, x, 3), label=r"$Y_1'''$") | |
| >>> ax.set_ylim(-10, 10) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return yv(v, z) | |
| else: | |
| return _bessel_diff_formula(v, z, n, yv, -1) | |
| def kvp(v, z, n=1): | |
| """Compute derivatives of real-order modified Bessel function Kv(z) | |
| Kv(z) is the modified Bessel function of the second kind. | |
| Derivative is calculated with respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like of float | |
| Order of Bessel function | |
| z : array_like of complex | |
| Argument at which to evaluate the derivative | |
| n : int, default 1 | |
| Order of derivative. For 0 returns the Bessel function `kv` itself. | |
| Returns | |
| ------- | |
| out : ndarray | |
| The results | |
| See Also | |
| -------- | |
| kv | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.29.5 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 6. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.29.E5 | |
| Examples | |
| -------- | |
| Compute the modified bessel function of the second kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import kvp | |
| >>> kvp(0, 1, 0), kvp(0, 1, 1), kvp(0, 1, 2) | |
| (0.42102443824070834, -0.6019072301972346, 1.0229316684379428) | |
| Compute the first derivative of the modified Bessel function of the second | |
| kind for several orders at 1 by providing an array for `v`. | |
| >>> kvp([0, 1, 2], 1, 1) | |
| array([-0.60190723, -1.02293167, -3.85158503]) | |
| Compute the first derivative of the modified Bessel function of the | |
| second kind of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0.5, 1.5, 3.]) | |
| >>> kvp(0, points, 1) | |
| array([-1.65644112, -0.2773878 , -0.04015643]) | |
| Plot the modified bessel function of the second kind and its | |
| first three derivatives. | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = np.linspace(0, 5, 1000) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, kvp(1, x, 0), label=r"$K_1$") | |
| >>> ax.plot(x, kvp(1, x, 1), label=r"$K_1'$") | |
| >>> ax.plot(x, kvp(1, x, 2), label=r"$K_1''$") | |
| >>> ax.plot(x, kvp(1, x, 3), label=r"$K_1'''$") | |
| >>> ax.set_ylim(-2.5, 2.5) | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return kv(v, z) | |
| else: | |
| return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1) | |
| def ivp(v, z, n=1): | |
| """Compute derivatives of modified Bessel functions of the first kind. | |
| Compute the nth derivative of the modified Bessel function `Iv` | |
| with respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like or float | |
| Order of Bessel function | |
| z : array_like | |
| Argument at which to evaluate the derivative; can be real or | |
| complex. | |
| n : int, default 1 | |
| Order of derivative. For 0, returns the Bessel function `iv` itself. | |
| Returns | |
| ------- | |
| scalar or ndarray | |
| nth derivative of the modified Bessel function. | |
| See Also | |
| -------- | |
| iv | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.29.5 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 6. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.29.E5 | |
| Examples | |
| -------- | |
| Compute the modified Bessel function of the first kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import ivp | |
| >>> ivp(0, 1, 0), ivp(0, 1, 1), ivp(0, 1, 2) | |
| (1.2660658777520084, 0.565159103992485, 0.7009067737595233) | |
| Compute the first derivative of the modified Bessel function of the first | |
| kind for several orders at 1 by providing an array for `v`. | |
| >>> ivp([0, 1, 2], 1, 1) | |
| array([0.5651591 , 0.70090677, 0.29366376]) | |
| Compute the first derivative of the modified Bessel function of the | |
| first kind of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0., 1.5, 3.]) | |
| >>> ivp(0, points, 1) | |
| array([0. , 0.98166643, 3.95337022]) | |
| Plot the modified Bessel function of the first kind of order 1 and its | |
| first three derivatives. | |
| >>> import matplotlib.pyplot as plt | |
| >>> x = np.linspace(-5, 5, 1000) | |
| >>> fig, ax = plt.subplots() | |
| >>> ax.plot(x, ivp(1, x, 0), label=r"$I_1$") | |
| >>> ax.plot(x, ivp(1, x, 1), label=r"$I_1'$") | |
| >>> ax.plot(x, ivp(1, x, 2), label=r"$I_1''$") | |
| >>> ax.plot(x, ivp(1, x, 3), label=r"$I_1'''$") | |
| >>> plt.legend() | |
| >>> plt.show() | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return iv(v, z) | |
| else: | |
| return _bessel_diff_formula(v, z, n, iv, 1) | |
| def h1vp(v, z, n=1): | |
| """Compute derivatives of Hankel function H1v(z) with respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like | |
| Order of Hankel function | |
| z : array_like | |
| Argument at which to evaluate the derivative. Can be real or | |
| complex. | |
| n : int, default 1 | |
| Order of derivative. For 0 returns the Hankel function `h1v` itself. | |
| Returns | |
| ------- | |
| scalar or ndarray | |
| Values of the derivative of the Hankel function. | |
| See Also | |
| -------- | |
| hankel1 | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.6.7 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.6.E7 | |
| Examples | |
| -------- | |
| Compute the Hankel function of the first kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import h1vp | |
| >>> h1vp(0, 1, 0), h1vp(0, 1, 1), h1vp(0, 1, 2) | |
| ((0.7651976865579664+0.088256964215677j), | |
| (-0.44005058574493355+0.7812128213002889j), | |
| (-0.3251471008130329-0.8694697855159659j)) | |
| Compute the first derivative of the Hankel function of the first kind | |
| for several orders at 1 by providing an array for `v`. | |
| >>> h1vp([0, 1, 2], 1, 1) | |
| array([-0.44005059+0.78121282j, 0.3251471 +0.86946979j, | |
| 0.21024362+2.52015239j]) | |
| Compute the first derivative of the Hankel function of the first kind | |
| of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0.5, 1.5, 3.]) | |
| >>> h1vp(0, points, 1) | |
| array([-0.24226846+1.47147239j, -0.55793651+0.41230863j, | |
| -0.33905896-0.32467442j]) | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return hankel1(v, z) | |
| else: | |
| return _bessel_diff_formula(v, z, n, hankel1, -1) | |
| def h2vp(v, z, n=1): | |
| """Compute derivatives of Hankel function H2v(z) with respect to `z`. | |
| Parameters | |
| ---------- | |
| v : array_like | |
| Order of Hankel function | |
| z : array_like | |
| Argument at which to evaluate the derivative. Can be real or | |
| complex. | |
| n : int, default 1 | |
| Order of derivative. For 0 returns the Hankel function `h2v` itself. | |
| Returns | |
| ------- | |
| scalar or ndarray | |
| Values of the derivative of the Hankel function. | |
| See Also | |
| -------- | |
| hankel2 | |
| Notes | |
| ----- | |
| The derivative is computed using the relation DLFM 10.6.7 [2]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 5. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.6.E7 | |
| Examples | |
| -------- | |
| Compute the Hankel function of the second kind of order 0 and | |
| its first two derivatives at 1. | |
| >>> from scipy.special import h2vp | |
| >>> h2vp(0, 1, 0), h2vp(0, 1, 1), h2vp(0, 1, 2) | |
| ((0.7651976865579664-0.088256964215677j), | |
| (-0.44005058574493355-0.7812128213002889j), | |
| (-0.3251471008130329+0.8694697855159659j)) | |
| Compute the first derivative of the Hankel function of the second kind | |
| for several orders at 1 by providing an array for `v`. | |
| >>> h2vp([0, 1, 2], 1, 1) | |
| array([-0.44005059-0.78121282j, 0.3251471 -0.86946979j, | |
| 0.21024362-2.52015239j]) | |
| Compute the first derivative of the Hankel function of the second kind | |
| of order 0 at several points by providing an array for `z`. | |
| >>> import numpy as np | |
| >>> points = np.array([0.5, 1.5, 3.]) | |
| >>> h2vp(0, points, 1) | |
| array([-0.24226846-1.47147239j, -0.55793651-0.41230863j, | |
| -0.33905896+0.32467442j]) | |
| """ | |
| n = _nonneg_int_or_fail(n, 'n') | |
| if n == 0: | |
| return hankel2(v, z) | |
| else: | |
| return _bessel_diff_formula(v, z, n, hankel2, -1) | |
| def riccati_jn(n, x): | |
| r"""Compute Ricatti-Bessel function of the first kind and its derivative. | |
| The Ricatti-Bessel function of the first kind is defined as :math:`x | |
| j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first | |
| kind of order :math:`n`. | |
| This function computes the value and first derivative of the | |
| Ricatti-Bessel function for all orders up to and including `n`. | |
| Parameters | |
| ---------- | |
| n : int | |
| Maximum order of function to compute | |
| x : float | |
| Argument at which to evaluate | |
| Returns | |
| ------- | |
| jn : ndarray | |
| Value of j0(x), ..., jn(x) | |
| jnp : ndarray | |
| First derivative j0'(x), ..., jn'(x) | |
| Notes | |
| ----- | |
| The computation is carried out via backward recurrence, using the | |
| relation DLMF 10.51.1 [2]_. | |
| Wrapper for a Fortran routine created by Shanjie Zhang and Jianming | |
| Jin [1]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.51.E1 | |
| """ | |
| if not (isscalar(n) and isscalar(x)): | |
| raise ValueError("arguments must be scalars.") | |
| n = _nonneg_int_or_fail(n, 'n', strict=False) | |
| if (n == 0): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| nm, jn, jnp = _specfun.rctj(n1, x) | |
| return jn[:(n+1)], jnp[:(n+1)] | |
| def riccati_yn(n, x): | |
| """Compute Ricatti-Bessel function of the second kind and its derivative. | |
| The Ricatti-Bessel function of the second kind is defined as :math:`x | |
| y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second | |
| kind of order :math:`n`. | |
| This function computes the value and first derivative of the function for | |
| all orders up to and including `n`. | |
| Parameters | |
| ---------- | |
| n : int | |
| Maximum order of function to compute | |
| x : float | |
| Argument at which to evaluate | |
| Returns | |
| ------- | |
| yn : ndarray | |
| Value of y0(x), ..., yn(x) | |
| ynp : ndarray | |
| First derivative y0'(x), ..., yn'(x) | |
| Notes | |
| ----- | |
| The computation is carried out via ascending recurrence, using the | |
| relation DLMF 10.51.1 [2]_. | |
| Wrapper for a Fortran routine created by Shanjie Zhang and Jianming | |
| Jin [1]_. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions. | |
| https://dlmf.nist.gov/10.51.E1 | |
| """ | |
| if not (isscalar(n) and isscalar(x)): | |
| raise ValueError("arguments must be scalars.") | |
| n = _nonneg_int_or_fail(n, 'n', strict=False) | |
| if (n == 0): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| nm, jn, jnp = _specfun.rcty(n1, x) | |
| return jn[:(n+1)], jnp[:(n+1)] | |
| def erf_zeros(nt): | |
| """Compute the first nt zero in the first quadrant, ordered by absolute value. | |
| Zeros in the other quadrants can be obtained by using the symmetries | |
| erf(-z) = erf(z) and erf(conj(z)) = conj(erf(z)). | |
| Parameters | |
| ---------- | |
| nt : int | |
| The number of zeros to compute | |
| Returns | |
| ------- | |
| The locations of the zeros of erf : ndarray (complex) | |
| Complex values at which zeros of erf(z) | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| >>> from scipy import special | |
| >>> special.erf_zeros(1) | |
| array([1.45061616+1.880943j]) | |
| Check that erf is (close to) zero for the value returned by erf_zeros | |
| >>> special.erf(special.erf_zeros(1)) | |
| array([4.95159469e-14-1.16407394e-16j]) | |
| """ | |
| if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): | |
| raise ValueError("Argument must be positive scalar integer.") | |
| return _specfun.cerzo(nt) | |
| def fresnelc_zeros(nt): | |
| """Compute nt complex zeros of cosine Fresnel integral C(z). | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute | |
| Returns | |
| ------- | |
| fresnelc_zeros: ndarray | |
| Zeros of the cosine Fresnel integral | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): | |
| raise ValueError("Argument must be positive scalar integer.") | |
| return _specfun.fcszo(1, nt) | |
| def fresnels_zeros(nt): | |
| """Compute nt complex zeros of sine Fresnel integral S(z). | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute | |
| Returns | |
| ------- | |
| fresnels_zeros: ndarray | |
| Zeros of the sine Fresnel integral | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): | |
| raise ValueError("Argument must be positive scalar integer.") | |
| return _specfun.fcszo(2, nt) | |
| def fresnel_zeros(nt): | |
| """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z). | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute | |
| Returns | |
| ------- | |
| zeros_sine: ndarray | |
| Zeros of the sine Fresnel integral | |
| zeros_cosine : ndarray | |
| Zeros of the cosine Fresnel integral | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): | |
| raise ValueError("Argument must be positive scalar integer.") | |
| return _specfun.fcszo(2, nt), _specfun.fcszo(1, nt) | |
| def assoc_laguerre(x, n, k=0.0): | |
| """Compute the generalized (associated) Laguerre polynomial of degree n and order k. | |
| The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``, | |
| with weighting function ``exp(-x) * x**k`` with ``k > -1``. | |
| Parameters | |
| ---------- | |
| x : float or ndarray | |
| Points where to evaluate the Laguerre polynomial | |
| n : int | |
| Degree of the Laguerre polynomial | |
| k : int | |
| Order of the Laguerre polynomial | |
| Returns | |
| ------- | |
| assoc_laguerre: float or ndarray | |
| Associated laguerre polynomial values | |
| Notes | |
| ----- | |
| `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with | |
| reversed argument order ``(x, n, k=0.0) --> (n, k, x)``. | |
| """ | |
| return _ufuncs.eval_genlaguerre(n, k, x) | |
| digamma = psi | |
| def polygamma(n, x): | |
| r"""Polygamma functions. | |
| Defined as :math:`\psi^{(n)}(x)` where :math:`\psi` is the | |
| `digamma` function. See [dlmf]_ for details. | |
| Parameters | |
| ---------- | |
| n : array_like | |
| The order of the derivative of the digamma function; must be | |
| integral | |
| x : array_like | |
| Real valued input | |
| Returns | |
| ------- | |
| ndarray | |
| Function results | |
| See Also | |
| -------- | |
| digamma | |
| References | |
| ---------- | |
| .. [dlmf] NIST, Digital Library of Mathematical Functions, | |
| https://dlmf.nist.gov/5.15 | |
| Examples | |
| -------- | |
| >>> from scipy import special | |
| >>> x = [2, 3, 25.5] | |
| >>> special.polygamma(1, x) | |
| array([ 0.64493407, 0.39493407, 0.03999467]) | |
| >>> special.polygamma(0, x) == special.psi(x) | |
| array([ True, True, True], dtype=bool) | |
| """ | |
| n, x = asarray(n), asarray(x) | |
| fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x) | |
| return where(n == 0, psi(x), fac2) | |
| def mathieu_even_coef(m, q): | |
| r"""Fourier coefficients for even Mathieu and modified Mathieu functions. | |
| The Fourier series of the even solutions of the Mathieu differential | |
| equation are of the form | |
| .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz | |
| .. math:: \mathrm{ce}_{2n+1}(z, q) = | |
| \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z | |
| This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even | |
| input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input | |
| m=2n+1. | |
| Parameters | |
| ---------- | |
| m : int | |
| Order of Mathieu functions. Must be non-negative. | |
| q : float (>=0) | |
| Parameter of Mathieu functions. Must be non-negative. | |
| Returns | |
| ------- | |
| Ak : ndarray | |
| Even or odd Fourier coefficients, corresponding to even or odd m. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions | |
| https://dlmf.nist.gov/28.4#i | |
| """ | |
| if not (isscalar(m) and isscalar(q)): | |
| raise ValueError("m and q must be scalars.") | |
| if (q < 0): | |
| raise ValueError("q >=0") | |
| if (m != floor(m)) or (m < 0): | |
| raise ValueError("m must be an integer >=0.") | |
| if (q <= 1): | |
| qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q | |
| else: | |
| qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q | |
| km = int(qm + 0.5*m) | |
| if km > 251: | |
| warnings.warn("Too many predicted coefficients.", RuntimeWarning, stacklevel=2) | |
| kd = 1 | |
| m = int(floor(m)) | |
| if m % 2: | |
| kd = 2 | |
| a = mathieu_a(m, q) | |
| fc = _specfun.fcoef(kd, m, q, a) | |
| return fc[:km] | |
| def mathieu_odd_coef(m, q): | |
| r"""Fourier coefficients for even Mathieu and modified Mathieu functions. | |
| The Fourier series of the odd solutions of the Mathieu differential | |
| equation are of the form | |
| .. math:: \mathrm{se}_{2n+1}(z, q) = | |
| \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z | |
| .. math:: \mathrm{se}_{2n+2}(z, q) = | |
| \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z | |
| This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even | |
| input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd | |
| input m=2n+1. | |
| Parameters | |
| ---------- | |
| m : int | |
| Order of Mathieu functions. Must be non-negative. | |
| q : float (>=0) | |
| Parameter of Mathieu functions. Must be non-negative. | |
| Returns | |
| ------- | |
| Bk : ndarray | |
| Even or odd Fourier coefficients, corresponding to even or odd m. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(m) and isscalar(q)): | |
| raise ValueError("m and q must be scalars.") | |
| if (q < 0): | |
| raise ValueError("q >=0") | |
| if (m != floor(m)) or (m <= 0): | |
| raise ValueError("m must be an integer > 0") | |
| if (q <= 1): | |
| qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q | |
| else: | |
| qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q | |
| km = int(qm + 0.5*m) | |
| if km > 251: | |
| warnings.warn("Too many predicted coefficients.", RuntimeWarning, stacklevel=2) | |
| kd = 4 | |
| m = int(floor(m)) | |
| if m % 2: | |
| kd = 3 | |
| b = mathieu_b(m, q) | |
| fc = _specfun.fcoef(kd, m, q, b) | |
| return fc[:km] | |
| def lpmn(m, n, z): | |
| """Sequence of associated Legendre functions of the first kind. | |
| Computes the associated Legendre function of the first kind of order m and | |
| degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. | |
| Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and | |
| ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. | |
| This function takes a real argument ``z``. For complex arguments ``z`` | |
| use clpmn instead. | |
| Parameters | |
| ---------- | |
| m : int | |
| ``|m| <= n``; the order of the Legendre function. | |
| n : int | |
| where ``n >= 0``; the degree of the Legendre function. Often | |
| called ``l`` (lower case L) in descriptions of the associated | |
| Legendre function | |
| z : float | |
| Input value. | |
| Returns | |
| ------- | |
| Pmn_z : (m+1, n+1) array | |
| Values for all orders 0..m and degrees 0..n | |
| Pmn_d_z : (m+1, n+1) array | |
| Derivatives for all orders 0..m and degrees 0..n | |
| See Also | |
| -------- | |
| clpmn: associated Legendre functions of the first kind for complex z | |
| Notes | |
| ----- | |
| In the interval (-1, 1), Ferrer's function of the first kind is | |
| returned. The phase convention used for the intervals (1, inf) | |
| and (-inf, -1) is such that the result is always real. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions | |
| https://dlmf.nist.gov/14.3 | |
| """ | |
| if not isscalar(m) or (abs(m) > n): | |
| raise ValueError("m must be <= n.") | |
| if not isscalar(n) or (n < 0): | |
| raise ValueError("n must be a non-negative integer.") | |
| if not isscalar(z): | |
| raise ValueError("z must be scalar.") | |
| if iscomplex(z): | |
| raise ValueError("Argument must be real. Use clpmn instead.") | |
| if (m < 0): | |
| mp = -m | |
| mf, nf = mgrid[0:mp+1, 0:n+1] | |
| with _ufuncs.errstate(all='ignore'): | |
| if abs(z) < 1: | |
| # Ferrer function; DLMF 14.9.3 | |
| fixarr = where(mf > nf, 0.0, | |
| (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) | |
| else: | |
| # Match to clpmn; DLMF 14.9.13 | |
| fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) | |
| else: | |
| mp = m | |
| p, pd = _specfun.lpmn(mp, n, z) | |
| if (m < 0): | |
| p = p * fixarr | |
| pd = pd * fixarr | |
| return p, pd | |
| def clpmn(m, n, z, type=3): | |
| """Associated Legendre function of the first kind for complex arguments. | |
| Computes the associated Legendre function of the first kind of order m and | |
| degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. | |
| Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and | |
| ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. | |
| Parameters | |
| ---------- | |
| m : int | |
| ``|m| <= n``; the order of the Legendre function. | |
| n : int | |
| where ``n >= 0``; the degree of the Legendre function. Often | |
| called ``l`` (lower case L) in descriptions of the associated | |
| Legendre function | |
| z : float or complex | |
| Input value. | |
| type : int, optional | |
| takes values 2 or 3 | |
| 2: cut on the real axis ``|x| > 1`` | |
| 3: cut on the real axis ``-1 < x < 1`` (default) | |
| Returns | |
| ------- | |
| Pmn_z : (m+1, n+1) array | |
| Values for all orders ``0..m`` and degrees ``0..n`` | |
| Pmn_d_z : (m+1, n+1) array | |
| Derivatives for all orders ``0..m`` and degrees ``0..n`` | |
| See Also | |
| -------- | |
| lpmn: associated Legendre functions of the first kind for real z | |
| Notes | |
| ----- | |
| By default, i.e. for ``type=3``, phase conventions are chosen according | |
| to [1]_ such that the function is analytic. The cut lies on the interval | |
| (-1, 1). Approaching the cut from above or below in general yields a phase | |
| factor with respect to Ferrer's function of the first kind | |
| (cf. `lpmn`). | |
| For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values | |
| on the interval (-1, 1) in the complex plane yields Ferrer's function | |
| of the first kind. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] NIST Digital Library of Mathematical Functions | |
| https://dlmf.nist.gov/14.21 | |
| """ | |
| if not isscalar(m) or (abs(m) > n): | |
| raise ValueError("m must be <= n.") | |
| if not isscalar(n) or (n < 0): | |
| raise ValueError("n must be a non-negative integer.") | |
| if not isscalar(z): | |
| raise ValueError("z must be scalar.") | |
| if not (type == 2 or type == 3): | |
| raise ValueError("type must be either 2 or 3.") | |
| if (m < 0): | |
| mp = -m | |
| mf, nf = mgrid[0:mp+1, 0:n+1] | |
| with _ufuncs.errstate(all='ignore'): | |
| if type == 2: | |
| fixarr = where(mf > nf, 0.0, | |
| (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) | |
| else: | |
| fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) | |
| else: | |
| mp = m | |
| p, pd = _specfun.clpmn(mp, n, z, type) | |
| if (m < 0): | |
| p = p * fixarr | |
| pd = pd * fixarr | |
| return p, pd | |
| def lqmn(m, n, z): | |
| """Sequence of associated Legendre functions of the second kind. | |
| Computes the associated Legendre function of the second kind of order m and | |
| degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``. | |
| Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and | |
| ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. | |
| Parameters | |
| ---------- | |
| m : int | |
| ``|m| <= n``; the order of the Legendre function. | |
| n : int | |
| where ``n >= 0``; the degree of the Legendre function. Often | |
| called ``l`` (lower case L) in descriptions of the associated | |
| Legendre function | |
| z : complex | |
| Input value. | |
| Returns | |
| ------- | |
| Qmn_z : (m+1, n+1) array | |
| Values for all orders 0..m and degrees 0..n | |
| Qmn_d_z : (m+1, n+1) array | |
| Derivatives for all orders 0..m and degrees 0..n | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(m) or (m < 0): | |
| raise ValueError("m must be a non-negative integer.") | |
| if not isscalar(n) or (n < 0): | |
| raise ValueError("n must be a non-negative integer.") | |
| if not isscalar(z): | |
| raise ValueError("z must be scalar.") | |
| m = int(m) | |
| n = int(n) | |
| # Ensure neither m nor n == 0 | |
| mm = max(1, m) | |
| nn = max(1, n) | |
| if iscomplex(z): | |
| q, qd = _specfun.clqmn(mm, nn, z) | |
| else: | |
| q, qd = _specfun.lqmn(mm, nn, z) | |
| return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)] | |
| def bernoulli(n): | |
| """Bernoulli numbers B0..Bn (inclusive). | |
| Parameters | |
| ---------- | |
| n : int | |
| Indicated the number of terms in the Bernoulli series to generate. | |
| Returns | |
| ------- | |
| ndarray | |
| The Bernoulli numbers ``[B(0), B(1), ..., B(n)]``. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] "Bernoulli number", Wikipedia, https://en.wikipedia.org/wiki/Bernoulli_number | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import bernoulli, zeta | |
| >>> bernoulli(4) | |
| array([ 1. , -0.5 , 0.16666667, 0. , -0.03333333]) | |
| The Wikipedia article ([2]_) points out the relationship between the | |
| Bernoulli numbers and the zeta function, ``B_n^+ = -n * zeta(1 - n)`` | |
| for ``n > 0``: | |
| >>> n = np.arange(1, 5) | |
| >>> -n * zeta(1 - n) | |
| array([ 0.5 , 0.16666667, -0. , -0.03333333]) | |
| Note that, in the notation used in the wikipedia article, | |
| `bernoulli` computes ``B_n^-`` (i.e. it used the convention that | |
| ``B_1`` is -1/2). The relation given above is for ``B_n^+``, so the | |
| sign of 0.5 does not match the output of ``bernoulli(4)``. | |
| """ | |
| if not isscalar(n) or (n < 0): | |
| raise ValueError("n must be a non-negative integer.") | |
| n = int(n) | |
| if (n < 2): | |
| n1 = 2 | |
| else: | |
| n1 = n | |
| return _specfun.bernob(int(n1))[:(n+1)] | |
| def euler(n): | |
| """Euler numbers E(0), E(1), ..., E(n). | |
| The Euler numbers [1]_ are also known as the secant numbers. | |
| Because ``euler(n)`` returns floating point values, it does not give | |
| exact values for large `n`. The first inexact value is E(22). | |
| Parameters | |
| ---------- | |
| n : int | |
| The highest index of the Euler number to be returned. | |
| Returns | |
| ------- | |
| ndarray | |
| The Euler numbers [E(0), E(1), ..., E(n)]. | |
| The odd Euler numbers, which are all zero, are included. | |
| References | |
| ---------- | |
| .. [1] Sequence A122045, The On-Line Encyclopedia of Integer Sequences, | |
| https://oeis.org/A122045 | |
| .. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import euler | |
| >>> euler(6) | |
| array([ 1., 0., -1., 0., 5., 0., -61.]) | |
| >>> euler(13).astype(np.int64) | |
| array([ 1, 0, -1, 0, 5, 0, -61, | |
| 0, 1385, 0, -50521, 0, 2702765, 0]) | |
| >>> euler(22)[-1] # Exact value of E(22) is -69348874393137901. | |
| -69348874393137976.0 | |
| """ | |
| if not isscalar(n) or (n < 0): | |
| raise ValueError("n must be a non-negative integer.") | |
| n = int(n) | |
| if (n < 2): | |
| n1 = 2 | |
| else: | |
| n1 = n | |
| return _specfun.eulerb(n1)[:(n+1)] | |
| def lpn(n, z): | |
| """Legendre function of the first kind. | |
| Compute sequence of Legendre functions of the first kind (polynomials), | |
| Pn(z) and derivatives for all degrees from 0 to n (inclusive). | |
| See also special.legendre for polynomial class. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(n) and isscalar(z)): | |
| raise ValueError("arguments must be scalars.") | |
| n = _nonneg_int_or_fail(n, 'n', strict=False) | |
| if (n < 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| if iscomplex(z): | |
| pn, pd = _specfun.clpn(n1, z) | |
| else: | |
| pn, pd = _specfun.lpn(n1, z) | |
| return pn[:(n+1)], pd[:(n+1)] | |
| def lqn(n, z): | |
| """Legendre function of the second kind. | |
| Compute sequence of Legendre functions of the second kind, Qn(z) and | |
| derivatives for all degrees from 0 to n (inclusive). | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(n) and isscalar(z)): | |
| raise ValueError("arguments must be scalars.") | |
| n = _nonneg_int_or_fail(n, 'n', strict=False) | |
| if (n < 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| if iscomplex(z): | |
| qn, qd = _specfun.clqn(n1, z) | |
| else: | |
| qn, qd = _specfun.lqnb(n1, z) | |
| return qn[:(n+1)], qd[:(n+1)] | |
| def ai_zeros(nt): | |
| """ | |
| Compute `nt` zeros and values of the Airy function Ai and its derivative. | |
| Computes the first `nt` zeros, `a`, of the Airy function Ai(x); | |
| first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x); | |
| the corresponding values Ai(a'); | |
| and the corresponding values Ai'(a). | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute | |
| Returns | |
| ------- | |
| a : ndarray | |
| First `nt` zeros of Ai(x) | |
| ap : ndarray | |
| First `nt` zeros of Ai'(x) | |
| ai : ndarray | |
| Values of Ai(x) evaluated at first `nt` zeros of Ai'(x) | |
| aip : ndarray | |
| Values of Ai'(x) evaluated at first `nt` zeros of Ai(x) | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| >>> from scipy import special | |
| >>> a, ap, ai, aip = special.ai_zeros(3) | |
| >>> a | |
| array([-2.33810741, -4.08794944, -5.52055983]) | |
| >>> ap | |
| array([-1.01879297, -3.24819758, -4.82009921]) | |
| >>> ai | |
| array([ 0.53565666, -0.41901548, 0.38040647]) | |
| >>> aip | |
| array([ 0.70121082, -0.80311137, 0.86520403]) | |
| """ | |
| kf = 1 | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be a positive integer scalar.") | |
| return _specfun.airyzo(nt, kf) | |
| def bi_zeros(nt): | |
| """ | |
| Compute `nt` zeros and values of the Airy function Bi and its derivative. | |
| Computes the first `nt` zeros, b, of the Airy function Bi(x); | |
| first `nt` zeros, b', of the derivative of the Airy function Bi'(x); | |
| the corresponding values Bi(b'); | |
| and the corresponding values Bi'(b). | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute | |
| Returns | |
| ------- | |
| b : ndarray | |
| First `nt` zeros of Bi(x) | |
| bp : ndarray | |
| First `nt` zeros of Bi'(x) | |
| bi : ndarray | |
| Values of Bi(x) evaluated at first `nt` zeros of Bi'(x) | |
| bip : ndarray | |
| Values of Bi'(x) evaluated at first `nt` zeros of Bi(x) | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| Examples | |
| -------- | |
| >>> from scipy import special | |
| >>> b, bp, bi, bip = special.bi_zeros(3) | |
| >>> b | |
| array([-1.17371322, -3.2710933 , -4.83073784]) | |
| >>> bp | |
| array([-2.29443968, -4.07315509, -5.51239573]) | |
| >>> bi | |
| array([-0.45494438, 0.39652284, -0.36796916]) | |
| >>> bip | |
| array([ 0.60195789, -0.76031014, 0.83699101]) | |
| """ | |
| kf = 2 | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be a positive integer scalar.") | |
| return _specfun.airyzo(nt, kf) | |
| def lmbda(v, x): | |
| r"""Jahnke-Emden Lambda function, Lambdav(x). | |
| This function is defined as [2]_, | |
| .. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v}, | |
| where :math:`\Gamma` is the gamma function and :math:`J_v` is the | |
| Bessel function of the first kind. | |
| Parameters | |
| ---------- | |
| v : float | |
| Order of the Lambda function | |
| x : float | |
| Value at which to evaluate the function and derivatives | |
| Returns | |
| ------- | |
| vl : ndarray | |
| Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| dl : ndarray | |
| Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| .. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and | |
| Curves" (4th ed.), Dover, 1945 | |
| """ | |
| if not (isscalar(v) and isscalar(x)): | |
| raise ValueError("arguments must be scalars.") | |
| if (v < 0): | |
| raise ValueError("argument must be > 0.") | |
| n = int(v) | |
| v0 = v - n | |
| if (n < 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| v1 = n1 + v0 | |
| if (v != floor(v)): | |
| vm, vl, dl = _specfun.lamv(v1, x) | |
| else: | |
| vm, vl, dl = _specfun.lamn(v1, x) | |
| return vl[:(n+1)], dl[:(n+1)] | |
| def pbdv_seq(v, x): | |
| """Parabolic cylinder functions Dv(x) and derivatives. | |
| Parameters | |
| ---------- | |
| v : float | |
| Order of the parabolic cylinder function | |
| x : float | |
| Value at which to evaluate the function and derivatives | |
| Returns | |
| ------- | |
| dv : ndarray | |
| Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| dp : ndarray | |
| Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 13. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(v) and isscalar(x)): | |
| raise ValueError("arguments must be scalars.") | |
| n = int(v) | |
| v0 = v-n | |
| if (n < 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| v1 = n1 + v0 | |
| dv, dp, pdf, pdd = _specfun.pbdv(v1, x) | |
| return dv[:n1+1], dp[:n1+1] | |
| def pbvv_seq(v, x): | |
| """Parabolic cylinder functions Vv(x) and derivatives. | |
| Parameters | |
| ---------- | |
| v : float | |
| Order of the parabolic cylinder function | |
| x : float | |
| Value at which to evaluate the function and derivatives | |
| Returns | |
| ------- | |
| dv : ndarray | |
| Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| dp : ndarray | |
| Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 13. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(v) and isscalar(x)): | |
| raise ValueError("arguments must be scalars.") | |
| n = int(v) | |
| v0 = v-n | |
| if (n <= 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| v1 = n1 + v0 | |
| dv, dp, pdf, pdd = _specfun.pbvv(v1, x) | |
| return dv[:n1+1], dp[:n1+1] | |
| def pbdn_seq(n, z): | |
| """Parabolic cylinder functions Dn(z) and derivatives. | |
| Parameters | |
| ---------- | |
| n : int | |
| Order of the parabolic cylinder function | |
| z : complex | |
| Value at which to evaluate the function and derivatives | |
| Returns | |
| ------- | |
| dv : ndarray | |
| Values of D_i(z), for i=0, ..., i=n. | |
| dp : ndarray | |
| Derivatives D_i'(z), for i=0, ..., i=n. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996, chapter 13. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(n) and isscalar(z)): | |
| raise ValueError("arguments must be scalars.") | |
| if (floor(n) != n): | |
| raise ValueError("n must be an integer.") | |
| if (abs(n) <= 1): | |
| n1 = 1 | |
| else: | |
| n1 = n | |
| cpb, cpd = _specfun.cpbdn(n1, z) | |
| return cpb[:n1+1], cpd[:n1+1] | |
| def ber_zeros(nt): | |
| """Compute nt zeros of the Kelvin function ber. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Kelvin function. | |
| See Also | |
| -------- | |
| ber | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 1) | |
| def bei_zeros(nt): | |
| """Compute nt zeros of the Kelvin function bei. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Kelvin function. | |
| See Also | |
| -------- | |
| bei | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 2) | |
| def ker_zeros(nt): | |
| """Compute nt zeros of the Kelvin function ker. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Kelvin function. | |
| See Also | |
| -------- | |
| ker | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 3) | |
| def kei_zeros(nt): | |
| """Compute nt zeros of the Kelvin function kei. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the Kelvin function. | |
| See Also | |
| -------- | |
| kei | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 4) | |
| def berp_zeros(nt): | |
| """Compute nt zeros of the derivative of the Kelvin function ber. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the derivative of the Kelvin function. | |
| See Also | |
| -------- | |
| ber, berp | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 5) | |
| def beip_zeros(nt): | |
| """Compute nt zeros of the derivative of the Kelvin function bei. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the derivative of the Kelvin function. | |
| See Also | |
| -------- | |
| bei, beip | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 6) | |
| def kerp_zeros(nt): | |
| """Compute nt zeros of the derivative of the Kelvin function ker. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the derivative of the Kelvin function. | |
| See Also | |
| -------- | |
| ker, kerp | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 7) | |
| def keip_zeros(nt): | |
| """Compute nt zeros of the derivative of the Kelvin function kei. | |
| Parameters | |
| ---------- | |
| nt : int | |
| Number of zeros to compute. Must be positive. | |
| Returns | |
| ------- | |
| ndarray | |
| First `nt` zeros of the derivative of the Kelvin function. | |
| See Also | |
| -------- | |
| kei, keip | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return _specfun.klvnzo(nt, 8) | |
| def kelvin_zeros(nt): | |
| """Compute nt zeros of all Kelvin functions. | |
| Returned in a length-8 tuple of arrays of length nt. The tuple contains | |
| the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei'). | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): | |
| raise ValueError("nt must be positive integer scalar.") | |
| return (_specfun.klvnzo(nt, 1), | |
| _specfun.klvnzo(nt, 2), | |
| _specfun.klvnzo(nt, 3), | |
| _specfun.klvnzo(nt, 4), | |
| _specfun.klvnzo(nt, 5), | |
| _specfun.klvnzo(nt, 6), | |
| _specfun.klvnzo(nt, 7), | |
| _specfun.klvnzo(nt, 8)) | |
| def pro_cv_seq(m, n, c): | |
| """Characteristic values for prolate spheroidal wave functions. | |
| Compute a sequence of characteristic values for the prolate | |
| spheroidal wave functions for mode m and n'=m..n and spheroidal | |
| parameter c. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(m) and isscalar(n) and isscalar(c)): | |
| raise ValueError("Arguments must be scalars.") | |
| if (n != floor(n)) or (m != floor(m)): | |
| raise ValueError("Modes must be integers.") | |
| if (n-m > 199): | |
| raise ValueError("Difference between n and m is too large.") | |
| maxL = n-m+1 | |
| return _specfun.segv(m, n, c, 1)[1][:maxL] | |
| def obl_cv_seq(m, n, c): | |
| """Characteristic values for oblate spheroidal wave functions. | |
| Compute a sequence of characteristic values for the oblate | |
| spheroidal wave functions for mode m and n'=m..n and spheroidal | |
| parameter c. | |
| References | |
| ---------- | |
| .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special | |
| Functions", John Wiley and Sons, 1996. | |
| https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html | |
| """ | |
| if not (isscalar(m) and isscalar(n) and isscalar(c)): | |
| raise ValueError("Arguments must be scalars.") | |
| if (n != floor(n)) or (m != floor(m)): | |
| raise ValueError("Modes must be integers.") | |
| if (n-m > 199): | |
| raise ValueError("Difference between n and m is too large.") | |
| maxL = n-m+1 | |
| return _specfun.segv(m, n, c, -1)[1][:maxL] | |
| def comb(N, k, *, exact=False, repetition=False, legacy=_NoValue): | |
| """The number of combinations of N things taken k at a time. | |
| This is often expressed as "N choose k". | |
| Parameters | |
| ---------- | |
| N : int, ndarray | |
| Number of things. | |
| k : int, ndarray | |
| Number of elements taken. | |
| exact : bool, optional | |
| For integers, if `exact` is False, then floating point precision is | |
| used, otherwise the result is computed exactly. For non-integers, if | |
| `exact` is True, is disregarded. | |
| repetition : bool, optional | |
| If `repetition` is True, then the number of combinations with | |
| repetition is computed. | |
| legacy : bool, optional | |
| If `legacy` is True and `exact` is True, then non-integral arguments | |
| are cast to ints; if `legacy` is False, the result for non-integral | |
| arguments is unaffected by the value of `exact`. | |
| .. deprecated:: 1.9.0 | |
| Using `legacy` is deprecated and will removed by | |
| Scipy 1.14.0. If you want to keep the legacy behaviour, cast | |
| your inputs directly, e.g. | |
| ``comb(int(your_N), int(your_k), exact=True)``. | |
| Returns | |
| ------- | |
| val : int, float, ndarray | |
| The total number of combinations. | |
| See Also | |
| -------- | |
| binom : Binomial coefficient considered as a function of two real | |
| variables. | |
| Notes | |
| ----- | |
| - Array arguments accepted only for exact=False case. | |
| - If N < 0, or k < 0, then 0 is returned. | |
| - If k > N and repetition=False, then 0 is returned. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import comb | |
| >>> k = np.array([3, 4]) | |
| >>> n = np.array([10, 10]) | |
| >>> comb(n, k, exact=False) | |
| array([ 120., 210.]) | |
| >>> comb(10, 3, exact=True) | |
| 120 | |
| >>> comb(10, 3, exact=True, repetition=True) | |
| 220 | |
| """ | |
| if legacy is not _NoValue: | |
| warnings.warn( | |
| "Using 'legacy' keyword is deprecated and will be removed by " | |
| "Scipy 1.14.0. If you want to keep the legacy behaviour, cast " | |
| "your inputs directly, e.g. " | |
| "'comb(int(your_N), int(your_k), exact=True)'.", | |
| DeprecationWarning, | |
| stacklevel=2 | |
| ) | |
| if repetition: | |
| return comb(N + k - 1, k, exact=exact, legacy=legacy) | |
| if exact: | |
| if int(N) == N and int(k) == k: | |
| # _comb_int casts inputs to integers, which is safe & intended here | |
| return _comb_int(N, k) | |
| elif legacy: | |
| # here at least one number is not an integer; legacy behavior uses | |
| # lossy casts to int | |
| return _comb_int(N, k) | |
| # otherwise, we disregard `exact=True`; it makes no sense for | |
| # non-integral arguments | |
| return comb(N, k) | |
| else: | |
| k, N = asarray(k), asarray(N) | |
| cond = (k <= N) & (N >= 0) & (k >= 0) | |
| vals = binom(N, k) | |
| if isinstance(vals, np.ndarray): | |
| vals[~cond] = 0 | |
| elif not cond: | |
| vals = np.float64(0) | |
| return vals | |
| def perm(N, k, exact=False): | |
| """Permutations of N things taken k at a time, i.e., k-permutations of N. | |
| It's also known as "partial permutations". | |
| Parameters | |
| ---------- | |
| N : int, ndarray | |
| Number of things. | |
| k : int, ndarray | |
| Number of elements taken. | |
| exact : bool, optional | |
| If `exact` is False, then floating point precision is used, otherwise | |
| exact long integer is computed. | |
| Returns | |
| ------- | |
| val : int, ndarray | |
| The number of k-permutations of N. | |
| Notes | |
| ----- | |
| - Array arguments accepted only for exact=False case. | |
| - If k > N, N < 0, or k < 0, then a 0 is returned. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import perm | |
| >>> k = np.array([3, 4]) | |
| >>> n = np.array([10, 10]) | |
| >>> perm(n, k) | |
| array([ 720., 5040.]) | |
| >>> perm(10, 3, exact=True) | |
| 720 | |
| """ | |
| if exact: | |
| if (k > N) or (N < 0) or (k < 0): | |
| return 0 | |
| val = 1 | |
| for i in range(N - k + 1, N + 1): | |
| val *= i | |
| return val | |
| else: | |
| k, N = asarray(k), asarray(N) | |
| cond = (k <= N) & (N >= 0) & (k >= 0) | |
| vals = poch(N - k + 1, k) | |
| if isinstance(vals, np.ndarray): | |
| vals[~cond] = 0 | |
| elif not cond: | |
| vals = np.float64(0) | |
| return vals | |
| # https://stackoverflow.com/a/16327037 | |
| def _range_prod(lo, hi, k=1): | |
| """ | |
| Product of a range of numbers spaced k apart (from hi). | |
| For k=1, this returns the product of | |
| lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi | |
| = hi! / (lo-1)! | |
| For k>1, it correspond to taking only every k'th number when | |
| counting down from hi - e.g. 18!!!! = _range_prod(1, 18, 4). | |
| Breaks into smaller products first for speed: | |
| _range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9)) | |
| """ | |
| if lo + k < hi: | |
| mid = (hi + lo) // 2 | |
| if k > 1: | |
| # make sure mid is a multiple of k away from hi | |
| mid = mid - ((mid - hi) % k) | |
| return _range_prod(lo, mid, k) * _range_prod(mid + k, hi, k) | |
| elif lo + k == hi: | |
| return lo * hi | |
| else: | |
| return hi | |
| def _factorialx_array_exact(n, k=1): | |
| """ | |
| Exact computation of factorial for an array. | |
| The factorials are computed in incremental fashion, by taking | |
| the sorted unique values of n and multiplying the intervening | |
| numbers between the different unique values. | |
| In other words, the factorial for the largest input is only | |
| computed once, with each other result computed in the process. | |
| k > 1 corresponds to the multifactorial. | |
| """ | |
| un = np.unique(n) | |
| # numpy changed nan-sorting behaviour with 1.21, see numpy/numpy#18070; | |
| # to unify the behaviour, we remove the nan's here; the respective | |
| # values will be set separately at the end | |
| un = un[~np.isnan(un)] | |
| # Convert to object array if np.int64 can't handle size | |
| if np.isnan(n).any(): | |
| dt = float | |
| elif k in _FACTORIALK_LIMITS_64BITS.keys(): | |
| if un[-1] > _FACTORIALK_LIMITS_64BITS[k]: | |
| # e.g. k=1: 21! > np.iinfo(np.int64).max | |
| dt = object | |
| elif un[-1] > _FACTORIALK_LIMITS_32BITS[k]: | |
| # e.g. k=3: 26!!! > np.iinfo(np.int32).max | |
| dt = np.int64 | |
| else: | |
| dt = np.dtype("long") | |
| else: | |
| # for k >= 10, we always use object | |
| dt = object | |
| out = np.empty_like(n, dtype=dt) | |
| # Handle invalid/trivial values | |
| un = un[un > 1] | |
| out[n < 2] = 1 | |
| out[n < 0] = 0 | |
| # Calculate products of each range of numbers | |
| # we can only multiply incrementally if the values are k apart; | |
| # therefore we partition `un` into "lanes", i.e. its residues modulo k | |
| for lane in range(0, k): | |
| ul = un[(un % k) == lane] if k > 1 else un | |
| if ul.size: | |
| # after np.unique, un resp. ul are sorted, ul[0] is the smallest; | |
| # cast to python ints to avoid overflow with np.int-types | |
| val = _range_prod(1, int(ul[0]), k=k) | |
| out[n == ul[0]] = val | |
| for i in range(len(ul) - 1): | |
| # by the filtering above, we have ensured that prev & current | |
| # are a multiple of k apart | |
| prev = ul[i] | |
| current = ul[i + 1] | |
| # we already multiplied all factors until prev; continue | |
| # building the full factorial from the following (`prev + 1`); | |
| # use int() for the same reason as above | |
| val *= _range_prod(int(prev + 1), int(current), k=k) | |
| out[n == current] = val | |
| if np.isnan(n).any(): | |
| out = out.astype(np.float64) | |
| out[np.isnan(n)] = np.nan | |
| return out | |
| def _factorialx_array_approx(n, k): | |
| """ | |
| Calculate approximation to multifactorial for array n and integer k. | |
| Ensure we only call _factorialx_approx_core where necessary/required. | |
| """ | |
| result = zeros(n.shape) | |
| # keep nans as nans | |
| place(result, np.isnan(n), np.nan) | |
| # only compute where n >= 0 (excludes nans), everything else is 0 | |
| cond = (n >= 0) | |
| n_to_compute = extract(cond, n) | |
| place(result, cond, _factorialx_approx_core(n_to_compute, k=k)) | |
| return result | |
| def _factorialx_approx_core(n, k): | |
| """ | |
| Core approximation to multifactorial for array n and integer k. | |
| """ | |
| if k == 1: | |
| # shortcut for k=1 | |
| result = gamma(n + 1) | |
| if isinstance(n, np.ndarray): | |
| # gamma does not maintain 0-dim arrays | |
| result = np.array(result) | |
| return result | |
| n_mod_k = n % k | |
| # scalar case separately, unified handling would be inefficient for arrays; | |
| # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below | |
| if not isinstance(n, np.ndarray): | |
| return ( | |
| np.power(k, (n - n_mod_k) / k) | |
| * gamma(n / k + 1) / gamma(n_mod_k / k + 1) | |
| * max(n_mod_k, 1) | |
| ) | |
| # factor that's independent of the residue class (see factorialk docstring) | |
| result = np.power(k, n / k) * gamma(n / k + 1) | |
| # factor dependent on residue r (for `r=0` it's 1, so we skip `r=0` | |
| # below and thus also avoid evaluating `max(r, 1)`) | |
| def corr(k, r): return np.power(k, -r / k) / gamma(r / k + 1) * r | |
| for r in np.unique(n_mod_k): | |
| if r == 0: | |
| continue | |
| result[n_mod_k == r] *= corr(k, r) | |
| return result | |
| def factorial(n, exact=False): | |
| """ | |
| The factorial of a number or array of numbers. | |
| The factorial of non-negative integer `n` is the product of all | |
| positive integers less than or equal to `n`:: | |
| n! = n * (n - 1) * (n - 2) * ... * 1 | |
| Parameters | |
| ---------- | |
| n : int or array_like of ints | |
| Input values. If ``n < 0``, the return value is 0. | |
| exact : bool, optional | |
| If True, calculate the answer exactly using long integer arithmetic. | |
| If False, result is approximated in floating point rapidly using the | |
| `gamma` function. | |
| Default is False. | |
| Returns | |
| ------- | |
| nf : float or int or ndarray | |
| Factorial of `n`, as integer or float depending on `exact`. | |
| Notes | |
| ----- | |
| For arrays with ``exact=True``, the factorial is computed only once, for | |
| the largest input, with each other result computed in the process. | |
| The output dtype is increased to ``int64`` or ``object`` if necessary. | |
| With ``exact=False`` the factorial is approximated using the gamma | |
| function: | |
| .. math:: n! = \\Gamma(n+1) | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import factorial | |
| >>> arr = np.array([3, 4, 5]) | |
| >>> factorial(arr, exact=False) | |
| array([ 6., 24., 120.]) | |
| >>> factorial(arr, exact=True) | |
| array([ 6, 24, 120]) | |
| >>> factorial(5, exact=True) | |
| 120 | |
| """ | |
| # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below | |
| if np.ndim(n) == 0 and not isinstance(n, np.ndarray): | |
| # scalar cases | |
| if n is None or np.isnan(n): | |
| return np.nan | |
| elif not (np.issubdtype(type(n), np.integer) | |
| or np.issubdtype(type(n), np.floating)): | |
| raise ValueError( | |
| f"Unsupported datatype for factorial: {type(n)}\n" | |
| "Permitted data types are integers and floating point numbers" | |
| ) | |
| elif n < 0: | |
| return 0 | |
| elif exact and np.issubdtype(type(n), np.integer): | |
| return math.factorial(n) | |
| elif exact: | |
| msg = ("Non-integer values of `n` together with `exact=True` are " | |
| "deprecated. Either ensure integer `n` or use `exact=False`.") | |
| warnings.warn(msg, DeprecationWarning, stacklevel=2) | |
| return _factorialx_approx_core(n, k=1) | |
| # arrays & array-likes | |
| n = asarray(n) | |
| if n.size == 0: | |
| # return empty arrays unchanged | |
| return n | |
| if not (np.issubdtype(n.dtype, np.integer) | |
| or np.issubdtype(n.dtype, np.floating)): | |
| raise ValueError( | |
| f"Unsupported datatype for factorial: {n.dtype}\n" | |
| "Permitted data types are integers and floating point numbers" | |
| ) | |
| if exact and not np.issubdtype(n.dtype, np.integer): | |
| msg = ("factorial with `exact=True` does not " | |
| "support non-integral arrays") | |
| raise ValueError(msg) | |
| if exact: | |
| return _factorialx_array_exact(n, k=1) | |
| return _factorialx_array_approx(n, k=1) | |
| def factorial2(n, exact=False): | |
| """Double factorial. | |
| This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5 | |
| * 3 * 1``. It can be approximated numerically as:: | |
| n!! = 2 ** (n / 2) * gamma(n / 2 + 1) * sqrt(2 / pi) n odd | |
| = 2 ** (n / 2) * gamma(n / 2 + 1) n even | |
| = 2 ** (n / 2) * (n / 2)! n even | |
| Parameters | |
| ---------- | |
| n : int or array_like | |
| Calculate ``n!!``. If ``n < 0``, the return value is 0. | |
| exact : bool, optional | |
| The result can be approximated rapidly using the gamma-formula | |
| above (default). If `exact` is set to True, calculate the | |
| answer exactly using integer arithmetic. | |
| Returns | |
| ------- | |
| nff : float or int | |
| Double factorial of `n`, as an int or a float depending on | |
| `exact`. | |
| Examples | |
| -------- | |
| >>> from scipy.special import factorial2 | |
| >>> factorial2(7, exact=False) | |
| array(105.00000000000001) | |
| >>> factorial2(7, exact=True) | |
| 105 | |
| """ | |
| # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below | |
| if np.ndim(n) == 0 and not isinstance(n, np.ndarray): | |
| # scalar cases | |
| if n is None or np.isnan(n): | |
| return np.nan | |
| elif not np.issubdtype(type(n), np.integer): | |
| msg = "factorial2 does not support non-integral scalar arguments" | |
| raise ValueError(msg) | |
| elif n < 0: | |
| return 0 | |
| elif n in {0, 1}: | |
| return 1 | |
| # general integer case | |
| if exact: | |
| return _range_prod(1, n, k=2) | |
| return _factorialx_approx_core(n, k=2) | |
| # arrays & array-likes | |
| n = asarray(n) | |
| if n.size == 0: | |
| # return empty arrays unchanged | |
| return n | |
| if not np.issubdtype(n.dtype, np.integer): | |
| raise ValueError("factorial2 does not support non-integral arrays") | |
| if exact: | |
| return _factorialx_array_exact(n, k=2) | |
| return _factorialx_array_approx(n, k=2) | |
| def factorialk(n, k, exact=None): | |
| """Multifactorial of n of order k, n(!!...!). | |
| This is the multifactorial of n skipping k values. For example, | |
| factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1 | |
| In particular, for any integer ``n``, we have | |
| factorialk(n, 1) = factorial(n) | |
| factorialk(n, 2) = factorial2(n) | |
| Parameters | |
| ---------- | |
| n : int or array_like | |
| Calculate multifactorial. If ``n < 0``, the return value is 0. | |
| k : int | |
| Order of multifactorial. | |
| exact : bool, optional | |
| If exact is set to True, calculate the answer exactly using | |
| integer arithmetic, otherwise use an approximation (faster, | |
| but yields floats instead of integers) | |
| .. warning:: | |
| The default value for ``exact`` will be changed to | |
| ``False`` in SciPy 1.15.0. | |
| Returns | |
| ------- | |
| val : int | |
| Multifactorial of `n`. | |
| Examples | |
| -------- | |
| >>> from scipy.special import factorialk | |
| >>> factorialk(5, k=1, exact=True) | |
| 120 | |
| >>> factorialk(5, k=3, exact=True) | |
| 10 | |
| >>> factorialk([5, 7, 9], k=3, exact=True) | |
| array([ 10, 28, 162]) | |
| >>> factorialk([5, 7, 9], k=3, exact=False) | |
| array([ 10., 28., 162.]) | |
| Notes | |
| ----- | |
| While less straight-forward than for the double-factorial, it's possible to | |
| calculate a general approximation formula of n!(k) by studying ``n`` for a given | |
| remainder ``r < k`` (thus ``n = m * k + r``, resp. ``r = n % k``), which can be | |
| put together into something valid for all integer values ``n >= 0`` & ``k > 0``:: | |
| n!(k) = k ** ((n - r)/k) * gamma(n/k + 1) / gamma(r/k + 1) * max(r, 1) | |
| This is the basis of the approximation when ``exact=False``. Compare also [1]. | |
| References | |
| ---------- | |
| .. [1] Complex extension to multifactorial | |
| https://en.wikipedia.org/wiki/Double_factorial#Alternative_extension_of_the_multifactorial | |
| """ | |
| if not np.issubdtype(type(k), np.integer) or k < 1: | |
| raise ValueError(f"k must be a positive integer, received: {k}") | |
| if exact is None: | |
| msg = ( | |
| "factorialk will default to `exact=False` starting from SciPy " | |
| "1.15.0. To avoid behaviour changes due to this, explicitly " | |
| "specify either `exact=False` (faster, returns floats), or the " | |
| "past default `exact=True` (slower, lossless result as integer)." | |
| ) | |
| warnings.warn(msg, DeprecationWarning, stacklevel=2) | |
| exact = True | |
| helpmsg = "" | |
| if k in {1, 2}: | |
| func = "factorial" if k == 1 else "factorial2" | |
| helpmsg = f"\nYou can try to use {func} instead" | |
| # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below | |
| if np.ndim(n) == 0 and not isinstance(n, np.ndarray): | |
| # scalar cases | |
| if n is None or np.isnan(n): | |
| return np.nan | |
| elif not np.issubdtype(type(n), np.integer): | |
| msg = "factorialk does not support non-integral scalar arguments!" | |
| raise ValueError(msg + helpmsg) | |
| elif n < 0: | |
| return 0 | |
| elif n in {0, 1}: | |
| return 1 | |
| # general integer case | |
| if exact: | |
| return _range_prod(1, n, k=k) | |
| return _factorialx_approx_core(n, k=k) | |
| # arrays & array-likes | |
| n = asarray(n) | |
| if n.size == 0: | |
| # return empty arrays unchanged | |
| return n | |
| if not np.issubdtype(n.dtype, np.integer): | |
| msg = "factorialk does not support non-integral arrays!" | |
| raise ValueError(msg + helpmsg) | |
| if exact: | |
| return _factorialx_array_exact(n, k=k) | |
| return _factorialx_array_approx(n, k=k) | |
| def stirling2(N, K, *, exact=False): | |
| r"""Generate Stirling number(s) of the second kind. | |
| Stirling numbers of the second kind count the number of ways to | |
| partition a set with N elements into K non-empty subsets. | |
| The values this function returns are calculated using a dynamic | |
| program which avoids redundant computation across the subproblems | |
| in the solution. For array-like input, this implementation also | |
| avoids redundant computation across the different Stirling number | |
| calculations. | |
| The numbers are sometimes denoted | |
| .. math:: | |
| {N \brace{K}} | |
| see [1]_ for details. This is often expressed-verbally-as | |
| "N subset K". | |
| Parameters | |
| ---------- | |
| N : int, ndarray | |
| Number of things. | |
| K : int, ndarray | |
| Number of non-empty subsets taken. | |
| exact : bool, optional | |
| Uses dynamic programming (DP) with floating point | |
| numbers for smaller arrays and uses a second order approximation due to | |
| Temme for larger entries of `N` and `K` that allows trading speed for | |
| accuracy. See [2]_ for a description. Temme approximation is used for | |
| values `n>50`. The max error from the DP has max relative error | |
| `4.5*10^-16` for `n<=50` and the max error from the Temme approximation | |
| has max relative error `5*10^-5` for `51 <= n < 70` and | |
| `9*10^-6` for `70 <= n < 101`. Note that these max relative errors will | |
| decrease further as `n` increases. | |
| Returns | |
| ------- | |
| val : int, float, ndarray | |
| The number of partitions. | |
| See Also | |
| -------- | |
| comb : The number of combinations of N things taken k at a time. | |
| Notes | |
| ----- | |
| - If N < 0, or K < 0, then 0 is returned. | |
| - If K > N, then 0 is returned. | |
| The output type will always be `int` or ndarray of `object`. | |
| The input must contain either numpy or python integers otherwise a | |
| TypeError is raised. | |
| References | |
| ---------- | |
| .. [1] R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete | |
| Mathematics: A Foundation for Computer Science," Addison-Wesley | |
| Publishing Company, Boston, 1989. Chapter 6, page 258. | |
| .. [2] Temme, Nico M. "Asymptotic estimates of Stirling numbers." | |
| Studies in Applied Mathematics 89.3 (1993): 233-243. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import stirling2 | |
| >>> k = np.array([3, -1, 3]) | |
| >>> n = np.array([10, 10, 9]) | |
| >>> stirling2(n, k) | |
| array([9330, 0, 3025], dtype=object) | |
| """ | |
| output_is_scalar = np.isscalar(N) and np.isscalar(K) | |
| # make a min-heap of unique (n,k) pairs | |
| N, K = asarray(N), asarray(K) | |
| if not np.issubdtype(N.dtype, np.integer): | |
| raise TypeError("Argument `N` must contain only integers") | |
| if not np.issubdtype(K.dtype, np.integer): | |
| raise TypeError("Argument `K` must contain only integers") | |
| if not exact: | |
| # NOTE: here we allow np.uint via casting to double types prior to | |
| # passing to private ufunc dispatcher. All dispatched functions | |
| # take double type for (n,k) arguments and return double. | |
| return _stirling2_inexact(N.astype(float), K.astype(float)) | |
| nk_pairs = list( | |
| set([(n.take(0), k.take(0)) | |
| for n, k in np.nditer([N, K], ['refs_ok'])]) | |
| ) | |
| heapify(nk_pairs) | |
| # base mapping for small values | |
| snsk_vals = defaultdict(int) | |
| for pair in [(0, 0), (1, 1), (2, 1), (2, 2)]: | |
| snsk_vals[pair] = 1 | |
| # for each pair in the min-heap, calculate the value, store for later | |
| n_old, n_row = 2, [0, 1, 1] | |
| while nk_pairs: | |
| n, k = heappop(nk_pairs) | |
| if n < 2 or k > n or k <= 0: | |
| continue | |
| elif k == n or k == 1: | |
| snsk_vals[(n, k)] = 1 | |
| continue | |
| elif n != n_old: | |
| num_iters = n - n_old | |
| while num_iters > 0: | |
| n_row.append(1) | |
| # traverse from back to remove second row | |
| for j in range(len(n_row)-2, 1, -1): | |
| n_row[j] = n_row[j]*j + n_row[j-1] | |
| num_iters -= 1 | |
| snsk_vals[(n, k)] = n_row[k] | |
| else: | |
| snsk_vals[(n, k)] = n_row[k] | |
| n_old, n_row = n, n_row | |
| out_types = [object, object, object] if exact else [float, float, float] | |
| # for each pair in the map, fetch the value, and populate the array | |
| it = np.nditer( | |
| [N, K, None], | |
| ['buffered', 'refs_ok'], | |
| [['readonly'], ['readonly'], ['writeonly', 'allocate']], | |
| op_dtypes=out_types, | |
| ) | |
| with it: | |
| while not it.finished: | |
| it[2] = snsk_vals[(int(it[0]), int(it[1]))] | |
| it.iternext() | |
| output = it.operands[2] | |
| # If N and K were both scalars, convert output to scalar. | |
| if output_is_scalar: | |
| output = output.take(0) | |
| return output | |
| def zeta(x, q=None, out=None): | |
| r""" | |
| Riemann or Hurwitz zeta function. | |
| Parameters | |
| ---------- | |
| x : array_like of float | |
| Input data, must be real | |
| q : array_like of float, optional | |
| Input data, must be real. Defaults to Riemann zeta. | |
| out : ndarray, optional | |
| Output array for the computed values. | |
| Returns | |
| ------- | |
| out : array_like | |
| Values of zeta(x). | |
| See Also | |
| -------- | |
| zetac | |
| Notes | |
| ----- | |
| The two-argument version is the Hurwitz zeta function | |
| .. math:: | |
| \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x}; | |
| see [dlmf]_ for details. The Riemann zeta function corresponds to | |
| the case when ``q = 1``. | |
| References | |
| ---------- | |
| .. [dlmf] NIST, Digital Library of Mathematical Functions, | |
| https://dlmf.nist.gov/25.11#i | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from scipy.special import zeta, polygamma, factorial | |
| Some specific values: | |
| >>> zeta(2), np.pi**2/6 | |
| (1.6449340668482266, 1.6449340668482264) | |
| >>> zeta(4), np.pi**4/90 | |
| (1.0823232337111381, 1.082323233711138) | |
| Relation to the `polygamma` function: | |
| >>> m = 3 | |
| >>> x = 1.25 | |
| >>> polygamma(m, x) | |
| array(2.782144009188397) | |
| >>> (-1)**(m+1) * factorial(m) * zeta(m+1, x) | |
| 2.7821440091883969 | |
| """ | |
| if q is None: | |
| return _ufuncs._riemann_zeta(x, out) | |
| else: | |
| return _ufuncs._zeta(x, q, out) | |