peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_testutils.py
| import os | |
| import functools | |
| import operator | |
| from scipy._lib import _pep440 | |
| import numpy as np | |
| from numpy.testing import assert_ | |
| import pytest | |
| import scipy.special as sc | |
| __all__ = ['with_special_errors', 'assert_func_equal', 'FuncData'] | |
| #------------------------------------------------------------------------------ | |
| # Check if a module is present to be used in tests | |
| #------------------------------------------------------------------------------ | |
| class MissingModule: | |
| def __init__(self, name): | |
| self.name = name | |
| def check_version(module, min_ver): | |
| if type(module) == MissingModule: | |
| return pytest.mark.skip(reason=f"{module.name} is not installed") | |
| return pytest.mark.skipif( | |
| _pep440.parse(module.__version__) < _pep440.Version(min_ver), | |
| reason=f"{module.__name__} version >= {min_ver} required" | |
| ) | |
| #------------------------------------------------------------------------------ | |
| # Enable convergence and loss of precision warnings -- turn off one by one | |
| #------------------------------------------------------------------------------ | |
| def with_special_errors(func): | |
| """ | |
| Enable special function errors (such as underflow, overflow, | |
| loss of precision, etc.) | |
| """ | |
| def wrapper(*a, **kw): | |
| with sc.errstate(all='raise'): | |
| res = func(*a, **kw) | |
| return res | |
| return wrapper | |
| #------------------------------------------------------------------------------ | |
| # Comparing function values at many data points at once, with helpful | |
| # error reports | |
| #------------------------------------------------------------------------------ | |
| def assert_func_equal(func, results, points, rtol=None, atol=None, | |
| param_filter=None, knownfailure=None, | |
| vectorized=True, dtype=None, nan_ok=False, | |
| ignore_inf_sign=False, distinguish_nan_and_inf=True): | |
| if hasattr(points, 'next'): | |
| # it's a generator | |
| points = list(points) | |
| points = np.asarray(points) | |
| if points.ndim == 1: | |
| points = points[:,None] | |
| nparams = points.shape[1] | |
| if hasattr(results, '__name__'): | |
| # function | |
| data = points | |
| result_columns = None | |
| result_func = results | |
| else: | |
| # dataset | |
| data = np.c_[points, results] | |
| result_columns = list(range(nparams, data.shape[1])) | |
| result_func = None | |
| fdata = FuncData(func, data, list(range(nparams)), | |
| result_columns=result_columns, result_func=result_func, | |
| rtol=rtol, atol=atol, param_filter=param_filter, | |
| knownfailure=knownfailure, nan_ok=nan_ok, vectorized=vectorized, | |
| ignore_inf_sign=ignore_inf_sign, | |
| distinguish_nan_and_inf=distinguish_nan_and_inf) | |
| fdata.check() | |
| class FuncData: | |
| """ | |
| Data set for checking a special function. | |
| Parameters | |
| ---------- | |
| func : function | |
| Function to test | |
| data : numpy array | |
| columnar data to use for testing | |
| param_columns : int or tuple of ints | |
| Columns indices in which the parameters to `func` lie. | |
| Can be imaginary integers to indicate that the parameter | |
| should be cast to complex. | |
| result_columns : int or tuple of ints, optional | |
| Column indices for expected results from `func`. | |
| result_func : callable, optional | |
| Function to call to obtain results. | |
| rtol : float, optional | |
| Required relative tolerance. Default is 5*eps. | |
| atol : float, optional | |
| Required absolute tolerance. Default is 5*tiny. | |
| param_filter : function, or tuple of functions/Nones, optional | |
| Filter functions to exclude some parameter ranges. | |
| If omitted, no filtering is done. | |
| knownfailure : str, optional | |
| Known failure error message to raise when the test is run. | |
| If omitted, no exception is raised. | |
| nan_ok : bool, optional | |
| If nan is always an accepted result. | |
| vectorized : bool, optional | |
| Whether all functions passed in are vectorized. | |
| ignore_inf_sign : bool, optional | |
| Whether to ignore signs of infinities. | |
| (Doesn't matter for complex-valued functions.) | |
| distinguish_nan_and_inf : bool, optional | |
| If True, treat numbers which contain nans or infs as | |
| equal. Sets ignore_inf_sign to be True. | |
| """ | |
| def __init__(self, func, data, param_columns, result_columns=None, | |
| result_func=None, rtol=None, atol=None, param_filter=None, | |
| knownfailure=None, dataname=None, nan_ok=False, vectorized=True, | |
| ignore_inf_sign=False, distinguish_nan_and_inf=True): | |
| self.func = func | |
| self.data = data | |
| self.dataname = dataname | |
| if not hasattr(param_columns, '__len__'): | |
| param_columns = (param_columns,) | |
| self.param_columns = tuple(param_columns) | |
| if result_columns is not None: | |
| if not hasattr(result_columns, '__len__'): | |
| result_columns = (result_columns,) | |
| self.result_columns = tuple(result_columns) | |
| if result_func is not None: | |
| message = "Only result_func or result_columns should be provided" | |
| raise ValueError(message) | |
| elif result_func is not None: | |
| self.result_columns = None | |
| else: | |
| raise ValueError("Either result_func or result_columns should be provided") | |
| self.result_func = result_func | |
| self.rtol = rtol | |
| self.atol = atol | |
| if not hasattr(param_filter, '__len__'): | |
| param_filter = (param_filter,) | |
| self.param_filter = param_filter | |
| self.knownfailure = knownfailure | |
| self.nan_ok = nan_ok | |
| self.vectorized = vectorized | |
| self.ignore_inf_sign = ignore_inf_sign | |
| self.distinguish_nan_and_inf = distinguish_nan_and_inf | |
| if not self.distinguish_nan_and_inf: | |
| self.ignore_inf_sign = True | |
| def get_tolerances(self, dtype): | |
| if not np.issubdtype(dtype, np.inexact): | |
| dtype = np.dtype(float) | |
| info = np.finfo(dtype) | |
| rtol, atol = self.rtol, self.atol | |
| if rtol is None: | |
| rtol = 5*info.eps | |
| if atol is None: | |
| atol = 5*info.tiny | |
| return rtol, atol | |
| def check(self, data=None, dtype=None, dtypes=None): | |
| """Check the special function against the data.""" | |
| __tracebackhide__ = operator.methodcaller( | |
| 'errisinstance', AssertionError | |
| ) | |
| if self.knownfailure: | |
| pytest.xfail(reason=self.knownfailure) | |
| if data is None: | |
| data = self.data | |
| if dtype is None: | |
| dtype = data.dtype | |
| else: | |
| data = data.astype(dtype) | |
| rtol, atol = self.get_tolerances(dtype) | |
| # Apply given filter functions | |
| if self.param_filter: | |
| param_mask = np.ones((data.shape[0],), np.bool_) | |
| for j, filter in zip(self.param_columns, self.param_filter): | |
| if filter: | |
| param_mask &= list(filter(data[:,j])) | |
| data = data[param_mask] | |
| # Pick parameters from the correct columns | |
| params = [] | |
| for idx, j in enumerate(self.param_columns): | |
| if np.iscomplexobj(j): | |
| j = int(j.imag) | |
| params.append(data[:,j].astype(complex)) | |
| elif dtypes and idx < len(dtypes): | |
| params.append(data[:, j].astype(dtypes[idx])) | |
| else: | |
| params.append(data[:,j]) | |
| # Helper for evaluating results | |
| def eval_func_at_params(func, skip_mask=None): | |
| if self.vectorized: | |
| got = func(*params) | |
| else: | |
| got = [] | |
| for j in range(len(params[0])): | |
| if skip_mask is not None and skip_mask[j]: | |
| got.append(np.nan) | |
| continue | |
| got.append(func(*tuple([params[i][j] for i in range(len(params))]))) | |
| got = np.asarray(got) | |
| if not isinstance(got, tuple): | |
| got = (got,) | |
| return got | |
| # Evaluate function to be tested | |
| got = eval_func_at_params(self.func) | |
| # Grab the correct results | |
| if self.result_columns is not None: | |
| # Correct results passed in with the data | |
| wanted = tuple([data[:,icol] for icol in self.result_columns]) | |
| else: | |
| # Function producing correct results passed in | |
| skip_mask = None | |
| if self.nan_ok and len(got) == 1: | |
| # Don't spend time evaluating what doesn't need to be evaluated | |
| skip_mask = np.isnan(got[0]) | |
| wanted = eval_func_at_params(self.result_func, skip_mask=skip_mask) | |
| # Check the validity of each output returned | |
| assert_(len(got) == len(wanted)) | |
| for output_num, (x, y) in enumerate(zip(got, wanted)): | |
| if np.issubdtype(x.dtype, np.complexfloating) or self.ignore_inf_sign: | |
| pinf_x = np.isinf(x) | |
| pinf_y = np.isinf(y) | |
| minf_x = np.isinf(x) | |
| minf_y = np.isinf(y) | |
| else: | |
| pinf_x = np.isposinf(x) | |
| pinf_y = np.isposinf(y) | |
| minf_x = np.isneginf(x) | |
| minf_y = np.isneginf(y) | |
| nan_x = np.isnan(x) | |
| nan_y = np.isnan(y) | |
| with np.errstate(all='ignore'): | |
| abs_y = np.absolute(y) | |
| abs_y[~np.isfinite(abs_y)] = 0 | |
| diff = np.absolute(x - y) | |
| diff[~np.isfinite(diff)] = 0 | |
| rdiff = diff / np.absolute(y) | |
| rdiff[~np.isfinite(rdiff)] = 0 | |
| tol_mask = (diff <= atol + rtol*abs_y) | |
| pinf_mask = (pinf_x == pinf_y) | |
| minf_mask = (minf_x == minf_y) | |
| nan_mask = (nan_x == nan_y) | |
| bad_j = ~(tol_mask & pinf_mask & minf_mask & nan_mask) | |
| point_count = bad_j.size | |
| if self.nan_ok: | |
| bad_j &= ~nan_x | |
| bad_j &= ~nan_y | |
| point_count -= (nan_x | nan_y).sum() | |
| if not self.distinguish_nan_and_inf and not self.nan_ok: | |
| # If nan's are okay we've already covered all these cases | |
| inf_x = np.isinf(x) | |
| inf_y = np.isinf(y) | |
| both_nonfinite = (inf_x & nan_y) | (nan_x & inf_y) | |
| bad_j &= ~both_nonfinite | |
| point_count -= both_nonfinite.sum() | |
| if np.any(bad_j): | |
| # Some bad results: inform what, where, and how bad | |
| msg = [""] | |
| msg.append("Max |adiff|: %g" % diff[bad_j].max()) | |
| msg.append("Max |rdiff|: %g" % rdiff[bad_j].max()) | |
| msg.append("Bad results (%d out of %d) for the following points " | |
| "(in output %d):" | |
| % (np.sum(bad_j), point_count, output_num,)) | |
| for j in np.nonzero(bad_j)[0]: | |
| j = int(j) | |
| def fmt(x): | |
| return '%30s' % np.array2string(x[j], precision=18) | |
| a = " ".join(map(fmt, params)) | |
| b = " ".join(map(fmt, got)) | |
| c = " ".join(map(fmt, wanted)) | |
| d = fmt(rdiff) | |
| msg.append(f"{a} => {b} != {c} (rdiff {d})") | |
| assert_(False, "\n".join(msg)) | |
| def __repr__(self): | |
| """Pretty-printing, esp. for Nose output""" | |
| if np.any(list(map(np.iscomplexobj, self.param_columns))): | |
| is_complex = " (complex)" | |
| else: | |
| is_complex = "" | |
| if self.dataname: | |
| return "<Data for {}{}: {}>".format(self.func.__name__, is_complex, | |
| os.path.basename(self.dataname)) | |
| else: | |
| return f"<Data for {self.func.__name__}{is_complex}>" | |