peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/tokenize
/regexp.py
| # Natural Language Toolkit: Tokenizers | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Edward Loper <[email protected]> | |
| # Steven Bird <[email protected]> | |
| # Trevor Cohn <[email protected]> | |
| # URL: <https://www.nltk.org> | |
| # For license information, see LICENSE.TXT | |
| r""" | |
| Regular-Expression Tokenizers | |
| A ``RegexpTokenizer`` splits a string into substrings using a regular expression. | |
| For example, the following tokenizer forms tokens out of alphabetic sequences, | |
| money expressions, and any other non-whitespace sequences: | |
| >>> from nltk.tokenize import RegexpTokenizer | |
| >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
| >>> tokenizer = RegexpTokenizer(r'\w+|\$[\d\.]+|\S+') | |
| >>> tokenizer.tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| A ``RegexpTokenizer`` can use its regexp to match delimiters instead: | |
| >>> tokenizer = RegexpTokenizer(r'\s+', gaps=True) | |
| >>> tokenizer.tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] | |
| Note that empty tokens are not returned when the delimiter appears at | |
| the start or end of the string. | |
| The material between the tokens is discarded. For example, | |
| the following tokenizer selects just the capitalized words: | |
| >>> capword_tokenizer = RegexpTokenizer(r'[A-Z]\w+') | |
| >>> capword_tokenizer.tokenize(s) | |
| ['Good', 'New', 'York', 'Please', 'Thanks'] | |
| This module contains several subclasses of ``RegexpTokenizer`` | |
| that use pre-defined regular expressions. | |
| >>> from nltk.tokenize import BlanklineTokenizer | |
| >>> # Uses '\s*\n\s*\n\s*': | |
| >>> BlanklineTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.', | |
| 'Thanks.'] | |
| All of the regular expression tokenizers are also available as functions: | |
| >>> from nltk.tokenize import regexp_tokenize, wordpunct_tokenize, blankline_tokenize | |
| >>> regexp_tokenize(s, pattern=r'\w+|\$[\d\.]+|\S+') # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| >>> wordpunct_tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', | |
| '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| >>> blankline_tokenize(s) | |
| ['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.', 'Thanks.'] | |
| Caution: The function ``regexp_tokenize()`` takes the text as its | |
| first argument, and the regular expression pattern as its second | |
| argument. This differs from the conventions used by Python's | |
| ``re`` functions, where the pattern is always the first argument. | |
| (This is for consistency with the other NLTK tokenizers.) | |
| """ | |
| import re | |
| from nltk.tokenize.api import TokenizerI | |
| from nltk.tokenize.util import regexp_span_tokenize | |
| class RegexpTokenizer(TokenizerI): | |
| r""" | |
| A tokenizer that splits a string using a regular expression, which | |
| matches either the tokens or the separators between tokens. | |
| >>> tokenizer = RegexpTokenizer(r'\w+|\$[\d\.]+|\S+') | |
| :type pattern: str | |
| :param pattern: The pattern used to build this tokenizer. | |
| (This pattern must not contain capturing parentheses; | |
| Use non-capturing parentheses, e.g. (?:...), instead) | |
| :type gaps: bool | |
| :param gaps: True if this tokenizer's pattern should be used | |
| to find separators between tokens; False if this | |
| tokenizer's pattern should be used to find the tokens | |
| themselves. | |
| :type discard_empty: bool | |
| :param discard_empty: True if any empty tokens `''` | |
| generated by the tokenizer should be discarded. Empty | |
| tokens can only be generated if `_gaps == True`. | |
| :type flags: int | |
| :param flags: The regexp flags used to compile this | |
| tokenizer's pattern. By default, the following flags are | |
| used: `re.UNICODE | re.MULTILINE | re.DOTALL`. | |
| """ | |
| def __init__( | |
| self, | |
| pattern, | |
| gaps=False, | |
| discard_empty=True, | |
| flags=re.UNICODE | re.MULTILINE | re.DOTALL, | |
| ): | |
| # If they gave us a regexp object, extract the pattern. | |
| pattern = getattr(pattern, "pattern", pattern) | |
| self._pattern = pattern | |
| self._gaps = gaps | |
| self._discard_empty = discard_empty | |
| self._flags = flags | |
| self._regexp = None | |
| def _check_regexp(self): | |
| if self._regexp is None: | |
| self._regexp = re.compile(self._pattern, self._flags) | |
| def tokenize(self, text): | |
| self._check_regexp() | |
| # If our regexp matches gaps, use re.split: | |
| if self._gaps: | |
| if self._discard_empty: | |
| return [tok for tok in self._regexp.split(text) if tok] | |
| else: | |
| return self._regexp.split(text) | |
| # If our regexp matches tokens, use re.findall: | |
| else: | |
| return self._regexp.findall(text) | |
| def span_tokenize(self, text): | |
| self._check_regexp() | |
| if self._gaps: | |
| for left, right in regexp_span_tokenize(text, self._regexp): | |
| if not (self._discard_empty and left == right): | |
| yield left, right | |
| else: | |
| for m in re.finditer(self._regexp, text): | |
| yield m.span() | |
| def __repr__(self): | |
| return "{}(pattern={!r}, gaps={!r}, discard_empty={!r}, flags={!r})".format( | |
| self.__class__.__name__, | |
| self._pattern, | |
| self._gaps, | |
| self._discard_empty, | |
| self._flags, | |
| ) | |
| class WhitespaceTokenizer(RegexpTokenizer): | |
| r""" | |
| Tokenize a string on whitespace (space, tab, newline). | |
| In general, users should use the string ``split()`` method instead. | |
| >>> from nltk.tokenize import WhitespaceTokenizer | |
| >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
| >>> WhitespaceTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.', | |
| 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.'] | |
| """ | |
| def __init__(self): | |
| RegexpTokenizer.__init__(self, r"\s+", gaps=True) | |
| class BlanklineTokenizer(RegexpTokenizer): | |
| """ | |
| Tokenize a string, treating any sequence of blank lines as a delimiter. | |
| Blank lines are defined as lines containing no characters, except for | |
| space or tab characters. | |
| """ | |
| def __init__(self): | |
| RegexpTokenizer.__init__(self, r"\s*\n\s*\n\s*", gaps=True) | |
| class WordPunctTokenizer(RegexpTokenizer): | |
| r""" | |
| Tokenize a text into a sequence of alphabetic and | |
| non-alphabetic characters, using the regexp ``\w+|[^\w\s]+``. | |
| >>> from nltk.tokenize import WordPunctTokenizer | |
| >>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks." | |
| >>> WordPunctTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE | |
| ['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', | |
| '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] | |
| """ | |
| def __init__(self): | |
| RegexpTokenizer.__init__(self, r"\w+|[^\w\s]+") | |
| ###################################################################### | |
| # { Tokenization Functions | |
| ###################################################################### | |
| def regexp_tokenize( | |
| text, | |
| pattern, | |
| gaps=False, | |
| discard_empty=True, | |
| flags=re.UNICODE | re.MULTILINE | re.DOTALL, | |
| ): | |
| """ | |
| Return a tokenized copy of *text*. See :class:`.RegexpTokenizer` | |
| for descriptions of the arguments. | |
| """ | |
| tokenizer = RegexpTokenizer(pattern, gaps, discard_empty, flags) | |
| return tokenizer.tokenize(text) | |
| blankline_tokenize = BlanklineTokenizer().tokenize | |
| wordpunct_tokenize = WordPunctTokenizer().tokenize | |