applied-ai-018 commited on
Commit
de33670
·
verified ·
1 Parent(s): 8777447

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/18.attention.dense.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step40/zero/4.post_attention_layernorm.weight/exp_avg.pt +3 -0
  3. venv/lib/python3.10/site-packages/nltk/__pycache__/__init__.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/nltk/__pycache__/book.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/nltk/__pycache__/cli.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/nltk/__pycache__/collections.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/nltk/__pycache__/collocations.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/nltk/__pycache__/data.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/nltk/__pycache__/downloader.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/nltk/__pycache__/featstruct.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/nltk/__pycache__/grammar.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/nltk/__pycache__/help.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/nltk/__pycache__/internals.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/nltk/__pycache__/jsontags.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/nltk/__pycache__/lazyimport.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/nltk/__pycache__/probability.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/nltk/__pycache__/text.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/nltk/__pycache__/toolbox.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/nltk/__pycache__/treeprettyprinter.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/nltk/__pycache__/util.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/nltk/__pycache__/wsd.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/nltk/metrics/__init__.py +51 -0
  38. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/__init__.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/agreement.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/aline.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/association.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/confusionmatrix.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/distance.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/paice.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/scores.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/segmentation.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/spearman.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/nltk/metrics/agreement.py +465 -0
  49. venv/lib/python3.10/site-packages/nltk/metrics/aline.py +1354 -0
  50. venv/lib/python3.10/site-packages/nltk/metrics/association.py +476 -0
ckpts/universal/global_step40/zero/18.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93482633809008696ac13147754df15af63147730ef48b2e800c1fefc6d00f08
3
+ size 16778317
ckpts/universal/global_step40/zero/4.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef05a5b41568f454cb8d51db527fa4cf539c17f2f8392ece5400565f3592d63e
3
+ size 9372
venv/lib/python3.10/site-packages/nltk/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.85 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/book.cpython-310.pyc ADDED
Binary file (3 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/cli.cpython-310.pyc ADDED
Binary file (1.67 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/collections.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/collocations.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/data.cpython-310.pyc ADDED
Binary file (38.7 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/downloader.cpython-310.pyc ADDED
Binary file (61.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/featstruct.cpython-310.pyc ADDED
Binary file (73.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/grammar.cpython-310.pyc ADDED
Binary file (53.3 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/help.cpython-310.pyc ADDED
Binary file (1.61 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/internals.cpython-310.pyc ADDED
Binary file (28.8 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/jsontags.cpython-310.pyc ADDED
Binary file (2.33 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/lazyimport.cpython-310.pyc ADDED
Binary file (3.74 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/probability.cpython-310.pyc ADDED
Binary file (86.2 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/text.cpython-310.pyc ADDED
Binary file (28.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/toolbox.cpython-310.pyc ADDED
Binary file (15.9 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/treeprettyprinter.cpython-310.pyc ADDED
Binary file (961 Bytes). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/util.cpython-310.pyc ADDED
Binary file (32.6 kB). View file
 
venv/lib/python3.10/site-packages/nltk/__pycache__/wsd.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.69 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/api.cpython-310.pyc ADDED
Binary file (4.94 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/decisiontree.cpython-310.pyc ADDED
Binary file (9.59 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/maxent.cpython-310.pyc ADDED
Binary file (46 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/megam.cpython-310.pyc ADDED
Binary file (5.21 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/naivebayes.cpython-310.pyc ADDED
Binary file (8 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/positivenaivebayes.cpython-310.pyc ADDED
Binary file (5.31 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/rte_classify.cpython-310.pyc ADDED
Binary file (5.55 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/scikitlearn.cpython-310.pyc ADDED
Binary file (5.94 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/senna.cpython-310.pyc ADDED
Binary file (5.63 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/svm.cpython-310.pyc ADDED
Binary file (694 Bytes). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/tadm.cpython-310.pyc ADDED
Binary file (3.33 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/textcat.cpython-310.pyc ADDED
Binary file (4.71 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/util.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
venv/lib/python3.10/site-packages/nltk/classify/__pycache__/weka.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__init__.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Metrics
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Steven Bird <[email protected]>
5
+ # Edward Loper <[email protected]>
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+ #
9
+
10
+ """
11
+ NLTK Metrics
12
+
13
+ Classes and methods for scoring processing modules.
14
+ """
15
+
16
+ from nltk.metrics.agreement import AnnotationTask
17
+ from nltk.metrics.aline import align
18
+ from nltk.metrics.association import (
19
+ BigramAssocMeasures,
20
+ ContingencyMeasures,
21
+ NgramAssocMeasures,
22
+ QuadgramAssocMeasures,
23
+ TrigramAssocMeasures,
24
+ )
25
+ from nltk.metrics.confusionmatrix import ConfusionMatrix
26
+ from nltk.metrics.distance import (
27
+ binary_distance,
28
+ custom_distance,
29
+ edit_distance,
30
+ edit_distance_align,
31
+ fractional_presence,
32
+ interval_distance,
33
+ jaccard_distance,
34
+ masi_distance,
35
+ presence,
36
+ )
37
+ from nltk.metrics.paice import Paice
38
+ from nltk.metrics.scores import (
39
+ accuracy,
40
+ approxrand,
41
+ f_measure,
42
+ log_likelihood,
43
+ precision,
44
+ recall,
45
+ )
46
+ from nltk.metrics.segmentation import ghd, pk, windowdiff
47
+ from nltk.metrics.spearman import (
48
+ ranks_from_scores,
49
+ ranks_from_sequence,
50
+ spearman_correlation,
51
+ )
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/agreement.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/aline.cpython-310.pyc ADDED
Binary file (13.6 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/association.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/confusionmatrix.cpython-310.pyc ADDED
Binary file (12 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/distance.cpython-310.pyc ADDED
Binary file (14.7 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/paice.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/scores.cpython-310.pyc ADDED
Binary file (7.59 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/segmentation.cpython-310.pyc ADDED
Binary file (6.5 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/__pycache__/spearman.cpython-310.pyc ADDED
Binary file (2.28 kB). View file
 
venv/lib/python3.10/site-packages/nltk/metrics/agreement.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Agreement Metrics
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Tom Lippincott <[email protected]>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+ #
8
+
9
+ """
10
+ Implementations of inter-annotator agreement coefficients surveyed by Artstein
11
+ and Poesio (2007), Inter-Coder Agreement for Computational Linguistics.
12
+
13
+ An agreement coefficient calculates the amount that annotators agreed on label
14
+ assignments beyond what is expected by chance.
15
+
16
+ In defining the AnnotationTask class, we use naming conventions similar to the
17
+ paper's terminology. There are three types of objects in an annotation task:
18
+
19
+ the coders (variables "c" and "C")
20
+ the items to be annotated (variables "i" and "I")
21
+ the potential categories to be assigned (variables "k" and "K")
22
+
23
+ Additionally, it is often the case that we don't want to treat two different
24
+ labels as complete disagreement, and so the AnnotationTask constructor can also
25
+ take a distance metric as a final argument. Distance metrics are simply
26
+ functions that take two arguments, and return a value between 0.0 and 1.0
27
+ indicating the distance between them. If not supplied, the default is binary
28
+ comparison between the arguments.
29
+
30
+ The simplest way to initialize an AnnotationTask is with a list of triples,
31
+ each containing a coder's assignment for one object in the task:
32
+
33
+ task = AnnotationTask(data=[('c1', '1', 'v1'),('c2', '1', 'v1'),...])
34
+
35
+ Note that the data list needs to contain the same number of triples for each
36
+ individual coder, containing category values for the same set of items.
37
+
38
+ Alpha (Krippendorff 1980)
39
+ Kappa (Cohen 1960)
40
+ S (Bennet, Albert and Goldstein 1954)
41
+ Pi (Scott 1955)
42
+
43
+
44
+ TODO: Describe handling of multiple coders and missing data
45
+
46
+ Expected results from the Artstein and Poesio survey paper:
47
+
48
+ >>> from nltk.metrics.agreement import AnnotationTask
49
+ >>> import os.path
50
+ >>> t = AnnotationTask(data=[x.split() for x in open(os.path.join(os.path.dirname(__file__), "artstein_poesio_example.txt"))])
51
+ >>> t.avg_Ao()
52
+ 0.88
53
+ >>> round(t.pi(), 5)
54
+ 0.79953
55
+ >>> round(t.S(), 2)
56
+ 0.82
57
+
58
+ This would have returned a wrong value (0.0) in @785fb79 as coders are in
59
+ the wrong order. Subsequently, all values for pi(), S(), and kappa() would
60
+ have been wrong as they are computed with avg_Ao().
61
+ >>> t2 = AnnotationTask(data=[('b','1','stat'),('a','1','stat')])
62
+ >>> t2.avg_Ao()
63
+ 1.0
64
+
65
+ The following, of course, also works.
66
+ >>> t3 = AnnotationTask(data=[('a','1','othr'),('b','1','othr')])
67
+ >>> t3.avg_Ao()
68
+ 1.0
69
+
70
+ """
71
+
72
+ import logging
73
+ from itertools import groupby
74
+ from operator import itemgetter
75
+
76
+ from nltk.internals import deprecated
77
+ from nltk.metrics.distance import binary_distance
78
+ from nltk.probability import ConditionalFreqDist, FreqDist
79
+
80
+ log = logging.getLogger(__name__)
81
+
82
+
83
+ class AnnotationTask:
84
+ """Represents an annotation task, i.e. people assign labels to items.
85
+
86
+ Notation tries to match notation in Artstein and Poesio (2007).
87
+
88
+ In general, coders and items can be represented as any hashable object.
89
+ Integers, for example, are fine, though strings are more readable.
90
+ Labels must support the distance functions applied to them, so e.g.
91
+ a string-edit-distance makes no sense if your labels are integers,
92
+ whereas interval distance needs numeric values. A notable case of this
93
+ is the MASI metric, which requires Python sets.
94
+ """
95
+
96
+ def __init__(self, data=None, distance=binary_distance):
97
+ """Initialize an annotation task.
98
+
99
+ The data argument can be None (to create an empty annotation task) or a sequence of 3-tuples,
100
+ each representing a coder's labeling of an item:
101
+ ``(coder,item,label)``
102
+
103
+ The distance argument is a function taking two arguments (labels) and producing a numerical distance.
104
+ The distance from a label to itself should be zero:
105
+ ``distance(l,l) = 0``
106
+ """
107
+ self.distance = distance
108
+ self.I = set()
109
+ self.K = set()
110
+ self.C = set()
111
+ self.data = []
112
+ if data is not None:
113
+ self.load_array(data)
114
+
115
+ def __str__(self):
116
+ return "\r\n".join(
117
+ map(
118
+ lambda x: "%s\t%s\t%s"
119
+ % (x["coder"], x["item"].replace("_", "\t"), ",".join(x["labels"])),
120
+ self.data,
121
+ )
122
+ )
123
+
124
+ def load_array(self, array):
125
+ """Load an sequence of annotation results, appending to any data already loaded.
126
+
127
+ The argument is a sequence of 3-tuples, each representing a coder's labeling of an item:
128
+ (coder,item,label)
129
+ """
130
+ for coder, item, labels in array:
131
+ self.C.add(coder)
132
+ self.K.add(labels)
133
+ self.I.add(item)
134
+ self.data.append({"coder": coder, "labels": labels, "item": item})
135
+
136
+ def agr(self, cA, cB, i, data=None):
137
+ """Agreement between two coders on a given item"""
138
+ data = data or self.data
139
+ # cfedermann: we don't know what combination of coder/item will come
140
+ # first in x; to avoid StopIteration problems due to assuming an order
141
+ # cA,cB, we allow either for k1 and then look up the missing as k2.
142
+ k1 = next(x for x in data if x["coder"] in (cA, cB) and x["item"] == i)
143
+ if k1["coder"] == cA:
144
+ k2 = next(x for x in data if x["coder"] == cB and x["item"] == i)
145
+ else:
146
+ k2 = next(x for x in data if x["coder"] == cA and x["item"] == i)
147
+
148
+ ret = 1.0 - float(self.distance(k1["labels"], k2["labels"]))
149
+ log.debug("Observed agreement between %s and %s on %s: %f", cA, cB, i, ret)
150
+ log.debug(
151
+ 'Distance between "%r" and "%r": %f', k1["labels"], k2["labels"], 1.0 - ret
152
+ )
153
+ return ret
154
+
155
+ def Nk(self, k):
156
+ return float(sum(1 for x in self.data if x["labels"] == k))
157
+
158
+ def Nik(self, i, k):
159
+ return float(sum(1 for x in self.data if x["item"] == i and x["labels"] == k))
160
+
161
+ def Nck(self, c, k):
162
+ return float(sum(1 for x in self.data if x["coder"] == c and x["labels"] == k))
163
+
164
+ @deprecated("Use Nk, Nik or Nck instead")
165
+ def N(self, k=None, i=None, c=None):
166
+ """Implements the "n-notation" used in Artstein and Poesio (2007)"""
167
+ if k is not None and i is None and c is None:
168
+ ret = self.Nk(k)
169
+ elif k is not None and i is not None and c is None:
170
+ ret = self.Nik(i, k)
171
+ elif k is not None and c is not None and i is None:
172
+ ret = self.Nck(c, k)
173
+ else:
174
+ raise ValueError(
175
+ f"You must pass either i or c, not both! (k={k!r},i={i!r},c={c!r})"
176
+ )
177
+ log.debug("Count on N[%s,%s,%s]: %d", k, i, c, ret)
178
+ return ret
179
+
180
+ def _grouped_data(self, field, data=None):
181
+ data = data or self.data
182
+ return groupby(sorted(data, key=itemgetter(field)), itemgetter(field))
183
+
184
+ def Ao(self, cA, cB):
185
+ """Observed agreement between two coders on all items."""
186
+ data = self._grouped_data(
187
+ "item", (x for x in self.data if x["coder"] in (cA, cB))
188
+ )
189
+ ret = sum(self.agr(cA, cB, item, item_data) for item, item_data in data) / len(
190
+ self.I
191
+ )
192
+ log.debug("Observed agreement between %s and %s: %f", cA, cB, ret)
193
+ return ret
194
+
195
+ def _pairwise_average(self, function):
196
+ """
197
+ Calculates the average of function results for each coder pair
198
+ """
199
+ total = 0
200
+ n = 0
201
+ s = self.C.copy()
202
+ for cA in self.C:
203
+ s.remove(cA)
204
+ for cB in s:
205
+ total += function(cA, cB)
206
+ n += 1
207
+ ret = total / n
208
+ return ret
209
+
210
+ def avg_Ao(self):
211
+ """Average observed agreement across all coders and items."""
212
+ ret = self._pairwise_average(self.Ao)
213
+ log.debug("Average observed agreement: %f", ret)
214
+ return ret
215
+
216
+ def Do_Kw_pairwise(self, cA, cB, max_distance=1.0):
217
+ """The observed disagreement for the weighted kappa coefficient."""
218
+ total = 0.0
219
+ data = (x for x in self.data if x["coder"] in (cA, cB))
220
+ for i, itemdata in self._grouped_data("item", data):
221
+ # we should have two items; distance doesn't care which comes first
222
+ total += self.distance(next(itemdata)["labels"], next(itemdata)["labels"])
223
+
224
+ ret = total / (len(self.I) * max_distance)
225
+ log.debug("Observed disagreement between %s and %s: %f", cA, cB, ret)
226
+ return ret
227
+
228
+ def Do_Kw(self, max_distance=1.0):
229
+ """Averaged over all labelers"""
230
+ ret = self._pairwise_average(
231
+ lambda cA, cB: self.Do_Kw_pairwise(cA, cB, max_distance)
232
+ )
233
+ log.debug("Observed disagreement: %f", ret)
234
+ return ret
235
+
236
+ # Agreement Coefficients
237
+ def S(self):
238
+ """Bennett, Albert and Goldstein 1954"""
239
+ Ae = 1.0 / len(self.K)
240
+ ret = (self.avg_Ao() - Ae) / (1.0 - Ae)
241
+ return ret
242
+
243
+ def pi(self):
244
+ """Scott 1955; here, multi-pi.
245
+ Equivalent to K from Siegel and Castellan (1988).
246
+
247
+ """
248
+ total = 0.0
249
+ label_freqs = FreqDist(x["labels"] for x in self.data)
250
+ for k, f in label_freqs.items():
251
+ total += f**2
252
+ Ae = total / ((len(self.I) * len(self.C)) ** 2)
253
+ return (self.avg_Ao() - Ae) / (1 - Ae)
254
+
255
+ def Ae_kappa(self, cA, cB):
256
+ Ae = 0.0
257
+ nitems = float(len(self.I))
258
+ label_freqs = ConditionalFreqDist((x["labels"], x["coder"]) for x in self.data)
259
+ for k in label_freqs.conditions():
260
+ Ae += (label_freqs[k][cA] / nitems) * (label_freqs[k][cB] / nitems)
261
+ return Ae
262
+
263
+ def kappa_pairwise(self, cA, cB):
264
+ """ """
265
+ Ae = self.Ae_kappa(cA, cB)
266
+ ret = (self.Ao(cA, cB) - Ae) / (1.0 - Ae)
267
+ log.debug("Expected agreement between %s and %s: %f", cA, cB, Ae)
268
+ return ret
269
+
270
+ def kappa(self):
271
+ """Cohen 1960
272
+ Averages naively over kappas for each coder pair.
273
+
274
+ """
275
+ return self._pairwise_average(self.kappa_pairwise)
276
+
277
+ def multi_kappa(self):
278
+ """Davies and Fleiss 1982
279
+ Averages over observed and expected agreements for each coder pair.
280
+
281
+ """
282
+ Ae = self._pairwise_average(self.Ae_kappa)
283
+ return (self.avg_Ao() - Ae) / (1.0 - Ae)
284
+
285
+ def Disagreement(self, label_freqs):
286
+ total_labels = sum(label_freqs.values())
287
+ pairs = 0.0
288
+ for j, nj in label_freqs.items():
289
+ for l, nl in label_freqs.items():
290
+ pairs += float(nj * nl) * self.distance(l, j)
291
+ return 1.0 * pairs / (total_labels * (total_labels - 1))
292
+
293
+ def alpha(self):
294
+ """Krippendorff 1980"""
295
+ # check for degenerate cases
296
+ if len(self.K) == 0:
297
+ raise ValueError("Cannot calculate alpha, no data present!")
298
+ if len(self.K) == 1:
299
+ log.debug("Only one annotation value, alpha returning 1.")
300
+ return 1
301
+ if len(self.C) == 1 and len(self.I) == 1:
302
+ raise ValueError("Cannot calculate alpha, only one coder and item present!")
303
+
304
+ total_disagreement = 0.0
305
+ total_ratings = 0
306
+ all_valid_labels_freq = FreqDist([])
307
+
308
+ total_do = 0.0 # Total observed disagreement for all items.
309
+ for i, itemdata in self._grouped_data("item"):
310
+ label_freqs = FreqDist(x["labels"] for x in itemdata)
311
+ labels_count = sum(label_freqs.values())
312
+ if labels_count < 2:
313
+ # Ignore the item.
314
+ continue
315
+ all_valid_labels_freq += label_freqs
316
+ total_do += self.Disagreement(label_freqs) * labels_count
317
+
318
+ do = total_do / sum(all_valid_labels_freq.values())
319
+
320
+ de = self.Disagreement(all_valid_labels_freq) # Expected disagreement.
321
+ k_alpha = 1.0 - do / de
322
+
323
+ return k_alpha
324
+
325
+ def weighted_kappa_pairwise(self, cA, cB, max_distance=1.0):
326
+ """Cohen 1968"""
327
+ total = 0.0
328
+ label_freqs = ConditionalFreqDist(
329
+ (x["coder"], x["labels"]) for x in self.data if x["coder"] in (cA, cB)
330
+ )
331
+ for j in self.K:
332
+ for l in self.K:
333
+ total += label_freqs[cA][j] * label_freqs[cB][l] * self.distance(j, l)
334
+ De = total / (max_distance * pow(len(self.I), 2))
335
+ log.debug("Expected disagreement between %s and %s: %f", cA, cB, De)
336
+ Do = self.Do_Kw_pairwise(cA, cB)
337
+ ret = 1.0 - (Do / De)
338
+ return ret
339
+
340
+ def weighted_kappa(self, max_distance=1.0):
341
+ """Cohen 1968"""
342
+ return self._pairwise_average(
343
+ lambda cA, cB: self.weighted_kappa_pairwise(cA, cB, max_distance)
344
+ )
345
+
346
+
347
+ if __name__ == "__main__":
348
+
349
+ import optparse
350
+ import re
351
+
352
+ from nltk.metrics import distance
353
+
354
+ # process command-line arguments
355
+ parser = optparse.OptionParser()
356
+ parser.add_option(
357
+ "-d",
358
+ "--distance",
359
+ dest="distance",
360
+ default="binary_distance",
361
+ help="distance metric to use",
362
+ )
363
+ parser.add_option(
364
+ "-a",
365
+ "--agreement",
366
+ dest="agreement",
367
+ default="kappa",
368
+ help="agreement coefficient to calculate",
369
+ )
370
+ parser.add_option(
371
+ "-e",
372
+ "--exclude",
373
+ dest="exclude",
374
+ action="append",
375
+ default=[],
376
+ help="coder names to exclude (may be specified multiple times)",
377
+ )
378
+ parser.add_option(
379
+ "-i",
380
+ "--include",
381
+ dest="include",
382
+ action="append",
383
+ default=[],
384
+ help="coder names to include, same format as exclude",
385
+ )
386
+ parser.add_option(
387
+ "-f",
388
+ "--file",
389
+ dest="file",
390
+ help="file to read labelings from, each line with three columns: 'labeler item labels'",
391
+ )
392
+ parser.add_option(
393
+ "-v",
394
+ "--verbose",
395
+ dest="verbose",
396
+ default="0",
397
+ help="how much debugging to print on stderr (0-4)",
398
+ )
399
+ parser.add_option(
400
+ "-c",
401
+ "--columnsep",
402
+ dest="columnsep",
403
+ default="\t",
404
+ help="char/string that separates the three columns in the file, defaults to tab",
405
+ )
406
+ parser.add_option(
407
+ "-l",
408
+ "--labelsep",
409
+ dest="labelsep",
410
+ default=",",
411
+ help="char/string that separates labels (if labelers can assign more than one), defaults to comma",
412
+ )
413
+ parser.add_option(
414
+ "-p",
415
+ "--presence",
416
+ dest="presence",
417
+ default=None,
418
+ help="convert each labeling into 1 or 0, based on presence of LABEL",
419
+ )
420
+ parser.add_option(
421
+ "-T",
422
+ "--thorough",
423
+ dest="thorough",
424
+ default=False,
425
+ action="store_true",
426
+ help="calculate agreement for every subset of the annotators",
427
+ )
428
+ (options, remainder) = parser.parse_args()
429
+
430
+ if not options.file:
431
+ parser.print_help()
432
+ exit()
433
+
434
+ logging.basicConfig(level=50 - 10 * int(options.verbose))
435
+
436
+ # read in data from the specified file
437
+ data = []
438
+ with open(options.file) as infile:
439
+ for l in infile:
440
+ toks = l.split(options.columnsep)
441
+ coder, object_, labels = (
442
+ toks[0],
443
+ str(toks[1:-1]),
444
+ frozenset(toks[-1].strip().split(options.labelsep)),
445
+ )
446
+ if (
447
+ (options.include == options.exclude)
448
+ or (len(options.include) > 0 and coder in options.include)
449
+ or (len(options.exclude) > 0 and coder not in options.exclude)
450
+ ):
451
+ data.append((coder, object_, labels))
452
+
453
+ if options.presence:
454
+ task = AnnotationTask(
455
+ data, getattr(distance, options.distance)(options.presence)
456
+ )
457
+ else:
458
+ task = AnnotationTask(data, getattr(distance, options.distance))
459
+
460
+ if options.thorough:
461
+ pass
462
+ else:
463
+ print(getattr(task, options.agreement)())
464
+
465
+ logging.shutdown()
venv/lib/python3.10/site-packages/nltk/metrics/aline.py ADDED
@@ -0,0 +1,1354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: ALINE
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Greg Kondrak <[email protected]>
5
+ # Geoff Bacon <[email protected]> (Python port)
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ ALINE
11
+ https://webdocs.cs.ualberta.ca/~kondrak/
12
+ Copyright 2002 by Grzegorz Kondrak.
13
+
14
+ ALINE is an algorithm for aligning phonetic sequences, described in [1].
15
+ This module is a port of Kondrak's (2002) ALINE. It provides functions for
16
+ phonetic sequence alignment and similarity analysis. These are useful in
17
+ historical linguistics, sociolinguistics and synchronic phonology.
18
+
19
+ ALINE has parameters that can be tuned for desired output. These parameters are:
20
+ - C_skip, C_sub, C_exp, C_vwl
21
+ - Salience weights
22
+ - Segmental features
23
+
24
+ In this implementation, some parameters have been changed from their default
25
+ values as described in [1], in order to replicate published results. All changes
26
+ are noted in comments.
27
+
28
+ Example usage
29
+ -------------
30
+
31
+ # Get optimal alignment of two phonetic sequences
32
+
33
+ >>> align('θin', 'tenwis') # doctest: +SKIP
34
+ [[('θ', 't'), ('i', 'e'), ('n', 'n'), ('-', 'w'), ('-', 'i'), ('-', 's')]]
35
+
36
+ [1] G. Kondrak. Algorithms for Language Reconstruction. PhD dissertation,
37
+ University of Toronto.
38
+ """
39
+
40
+ try:
41
+ import numpy as np
42
+ except ImportError:
43
+ np = None
44
+
45
+ # === Constants ===
46
+
47
+ inf = float("inf")
48
+
49
+ # Default values for maximum similarity scores (Kondrak 2002: 54)
50
+ C_skip = -10 # Indels
51
+ C_sub = 35 # Substitutions
52
+ C_exp = 45 # Expansions/compressions
53
+ C_vwl = 5 # Vowel/consonant relative weight (decreased from 10)
54
+
55
+ consonants = [
56
+ "B",
57
+ "N",
58
+ "R",
59
+ "b",
60
+ "c",
61
+ "d",
62
+ "f",
63
+ "g",
64
+ "h",
65
+ "j",
66
+ "k",
67
+ "l",
68
+ "m",
69
+ "n",
70
+ "p",
71
+ "q",
72
+ "r",
73
+ "s",
74
+ "t",
75
+ "v",
76
+ "x",
77
+ "z",
78
+ "ç",
79
+ "ð",
80
+ "ħ",
81
+ "ŋ",
82
+ "ɖ",
83
+ "ɟ",
84
+ "ɢ",
85
+ "ɣ",
86
+ "ɦ",
87
+ "ɬ",
88
+ "ɮ",
89
+ "ɰ",
90
+ "ɱ",
91
+ "ɲ",
92
+ "ɳ",
93
+ "ɴ",
94
+ "ɸ",
95
+ "ɹ",
96
+ "ɻ",
97
+ "ɽ",
98
+ "ɾ",
99
+ "ʀ",
100
+ "ʁ",
101
+ "ʂ",
102
+ "ʃ",
103
+ "ʈ",
104
+ "ʋ",
105
+ "ʐ ",
106
+ "ʒ",
107
+ "ʔ",
108
+ "ʕ",
109
+ "ʙ",
110
+ "ʝ",
111
+ "β",
112
+ "θ",
113
+ "χ",
114
+ "ʐ",
115
+ "w",
116
+ ]
117
+
118
+ # Relevant features for comparing consonants and vowels
119
+ R_c = [
120
+ "aspirated",
121
+ "lateral",
122
+ "manner",
123
+ "nasal",
124
+ "place",
125
+ "retroflex",
126
+ "syllabic",
127
+ "voice",
128
+ ]
129
+ # 'high' taken out of R_v because same as manner
130
+ R_v = [
131
+ "back",
132
+ "lateral",
133
+ "long",
134
+ "manner",
135
+ "nasal",
136
+ "place",
137
+ "retroflex",
138
+ "round",
139
+ "syllabic",
140
+ "voice",
141
+ ]
142
+
143
+ # Flattened feature matrix (Kondrak 2002: 56)
144
+ similarity_matrix = {
145
+ # place
146
+ "bilabial": 1.0,
147
+ "labiodental": 0.95,
148
+ "dental": 0.9,
149
+ "alveolar": 0.85,
150
+ "retroflex": 0.8,
151
+ "palato-alveolar": 0.75,
152
+ "palatal": 0.7,
153
+ "velar": 0.6,
154
+ "uvular": 0.5,
155
+ "pharyngeal": 0.3,
156
+ "glottal": 0.1,
157
+ "labiovelar": 1.0,
158
+ "vowel": -1.0, # added 'vowel'
159
+ # manner
160
+ "stop": 1.0,
161
+ "affricate": 0.9,
162
+ "fricative": 0.85, # increased fricative from 0.8
163
+ "trill": 0.7,
164
+ "tap": 0.65,
165
+ "approximant": 0.6,
166
+ "high vowel": 0.4,
167
+ "mid vowel": 0.2,
168
+ "low vowel": 0.0,
169
+ "vowel2": 0.5, # added vowel
170
+ # high
171
+ "high": 1.0,
172
+ "mid": 0.5,
173
+ "low": 0.0,
174
+ # back
175
+ "front": 1.0,
176
+ "central": 0.5,
177
+ "back": 0.0,
178
+ # binary features
179
+ "plus": 1.0,
180
+ "minus": 0.0,
181
+ }
182
+
183
+ # Relative weights of phonetic features (Kondrak 2002: 55)
184
+ salience = {
185
+ "syllabic": 5,
186
+ "place": 40,
187
+ "manner": 50,
188
+ "voice": 5, # decreased from 10
189
+ "nasal": 20, # increased from 10
190
+ "retroflex": 10,
191
+ "lateral": 10,
192
+ "aspirated": 5,
193
+ "long": 0, # decreased from 1
194
+ "high": 3, # decreased from 5
195
+ "back": 2, # decreased from 5
196
+ "round": 2, # decreased from 5
197
+ }
198
+
199
+ # (Kondrak 2002: 59-60)
200
+ feature_matrix = {
201
+ # Consonants
202
+ "p": {
203
+ "place": "bilabial",
204
+ "manner": "stop",
205
+ "syllabic": "minus",
206
+ "voice": "minus",
207
+ "nasal": "minus",
208
+ "retroflex": "minus",
209
+ "lateral": "minus",
210
+ "aspirated": "minus",
211
+ },
212
+ "b": {
213
+ "place": "bilabial",
214
+ "manner": "stop",
215
+ "syllabic": "minus",
216
+ "voice": "plus",
217
+ "nasal": "minus",
218
+ "retroflex": "minus",
219
+ "lateral": "minus",
220
+ "aspirated": "minus",
221
+ },
222
+ "t": {
223
+ "place": "alveolar",
224
+ "manner": "stop",
225
+ "syllabic": "minus",
226
+ "voice": "minus",
227
+ "nasal": "minus",
228
+ "retroflex": "minus",
229
+ "lateral": "minus",
230
+ "aspirated": "minus",
231
+ },
232
+ "d": {
233
+ "place": "alveolar",
234
+ "manner": "stop",
235
+ "syllabic": "minus",
236
+ "voice": "plus",
237
+ "nasal": "minus",
238
+ "retroflex": "minus",
239
+ "lateral": "minus",
240
+ "aspirated": "minus",
241
+ },
242
+ "ʈ": {
243
+ "place": "retroflex",
244
+ "manner": "stop",
245
+ "syllabic": "minus",
246
+ "voice": "minus",
247
+ "nasal": "minus",
248
+ "retroflex": "plus",
249
+ "lateral": "minus",
250
+ "aspirated": "minus",
251
+ },
252
+ "ɖ": {
253
+ "place": "retroflex",
254
+ "manner": "stop",
255
+ "syllabic": "minus",
256
+ "voice": "plus",
257
+ "nasal": "minus",
258
+ "retroflex": "plus",
259
+ "lateral": "minus",
260
+ "aspirated": "minus",
261
+ },
262
+ "c": {
263
+ "place": "palatal",
264
+ "manner": "stop",
265
+ "syllabic": "minus",
266
+ "voice": "minus",
267
+ "nasal": "minus",
268
+ "retroflex": "minus",
269
+ "lateral": "minus",
270
+ "aspirated": "minus",
271
+ },
272
+ "ɟ": {
273
+ "place": "palatal",
274
+ "manner": "stop",
275
+ "syllabic": "minus",
276
+ "voice": "plus",
277
+ "nasal": "minus",
278
+ "retroflex": "minus",
279
+ "lateral": "minus",
280
+ "aspirated": "minus",
281
+ },
282
+ "k": {
283
+ "place": "velar",
284
+ "manner": "stop",
285
+ "syllabic": "minus",
286
+ "voice": "minus",
287
+ "nasal": "minus",
288
+ "retroflex": "minus",
289
+ "lateral": "minus",
290
+ "aspirated": "minus",
291
+ },
292
+ "g": {
293
+ "place": "velar",
294
+ "manner": "stop",
295
+ "syllabic": "minus",
296
+ "voice": "plus",
297
+ "nasal": "minus",
298
+ "retroflex": "minus",
299
+ "lateral": "minus",
300
+ "aspirated": "minus",
301
+ },
302
+ "q": {
303
+ "place": "uvular",
304
+ "manner": "stop",
305
+ "syllabic": "minus",
306
+ "voice": "minus",
307
+ "nasal": "minus",
308
+ "retroflex": "minus",
309
+ "lateral": "minus",
310
+ "aspirated": "minus",
311
+ },
312
+ "ɢ": {
313
+ "place": "uvular",
314
+ "manner": "stop",
315
+ "syllabic": "minus",
316
+ "voice": "plus",
317
+ "nasal": "minus",
318
+ "retroflex": "minus",
319
+ "lateral": "minus",
320
+ "aspirated": "minus",
321
+ },
322
+ "ʔ": {
323
+ "place": "glottal",
324
+ "manner": "stop",
325
+ "syllabic": "minus",
326
+ "voice": "minus",
327
+ "nasal": "minus",
328
+ "retroflex": "minus",
329
+ "lateral": "minus",
330
+ "aspirated": "minus",
331
+ },
332
+ "m": {
333
+ "place": "bilabial",
334
+ "manner": "stop",
335
+ "syllabic": "minus",
336
+ "voice": "plus",
337
+ "nasal": "plus",
338
+ "retroflex": "minus",
339
+ "lateral": "minus",
340
+ "aspirated": "minus",
341
+ },
342
+ "ɱ": {
343
+ "place": "labiodental",
344
+ "manner": "stop",
345
+ "syllabic": "minus",
346
+ "voice": "plus",
347
+ "nasal": "plus",
348
+ "retroflex": "minus",
349
+ "lateral": "minus",
350
+ "aspirated": "minus",
351
+ },
352
+ "n": {
353
+ "place": "alveolar",
354
+ "manner": "stop",
355
+ "syllabic": "minus",
356
+ "voice": "plus",
357
+ "nasal": "plus",
358
+ "retroflex": "minus",
359
+ "lateral": "minus",
360
+ "aspirated": "minus",
361
+ },
362
+ "ɳ": {
363
+ "place": "retroflex",
364
+ "manner": "stop",
365
+ "syllabic": "minus",
366
+ "voice": "plus",
367
+ "nasal": "plus",
368
+ "retroflex": "plus",
369
+ "lateral": "minus",
370
+ "aspirated": "minus",
371
+ },
372
+ "ɲ": {
373
+ "place": "palatal",
374
+ "manner": "stop",
375
+ "syllabic": "minus",
376
+ "voice": "plus",
377
+ "nasal": "plus",
378
+ "retroflex": "minus",
379
+ "lateral": "minus",
380
+ "aspirated": "minus",
381
+ },
382
+ "ŋ": {
383
+ "place": "velar",
384
+ "manner": "stop",
385
+ "syllabic": "minus",
386
+ "voice": "plus",
387
+ "nasal": "plus",
388
+ "retroflex": "minus",
389
+ "lateral": "minus",
390
+ "aspirated": "minus",
391
+ },
392
+ "ɴ": {
393
+ "place": "uvular",
394
+ "manner": "stop",
395
+ "syllabic": "minus",
396
+ "voice": "plus",
397
+ "nasal": "plus",
398
+ "retroflex": "minus",
399
+ "lateral": "minus",
400
+ "aspirated": "minus",
401
+ },
402
+ "N": {
403
+ "place": "uvular",
404
+ "manner": "stop",
405
+ "syllabic": "minus",
406
+ "voice": "plus",
407
+ "nasal": "plus",
408
+ "retroflex": "minus",
409
+ "lateral": "minus",
410
+ "aspirated": "minus",
411
+ },
412
+ "ʙ": {
413
+ "place": "bilabial",
414
+ "manner": "trill",
415
+ "syllabic": "minus",
416
+ "voice": "plus",
417
+ "nasal": "minus",
418
+ "retroflex": "minus",
419
+ "lateral": "minus",
420
+ "aspirated": "minus",
421
+ },
422
+ "B": {
423
+ "place": "bilabial",
424
+ "manner": "trill",
425
+ "syllabic": "minus",
426
+ "voice": "plus",
427
+ "nasal": "minus",
428
+ "retroflex": "minus",
429
+ "lateral": "minus",
430
+ "aspirated": "minus",
431
+ },
432
+ "r": {
433
+ "place": "alveolar",
434
+ "manner": "trill",
435
+ "syllabic": "minus",
436
+ "voice": "plus",
437
+ "nasal": "minus",
438
+ "retroflex": "plus",
439
+ "lateral": "minus",
440
+ "aspirated": "minus",
441
+ },
442
+ "ʀ": {
443
+ "place": "uvular",
444
+ "manner": "trill",
445
+ "syllabic": "minus",
446
+ "voice": "plus",
447
+ "nasal": "minus",
448
+ "retroflex": "minus",
449
+ "lateral": "minus",
450
+ "aspirated": "minus",
451
+ },
452
+ "R": {
453
+ "place": "uvular",
454
+ "manner": "trill",
455
+ "syllabic": "minus",
456
+ "voice": "plus",
457
+ "nasal": "minus",
458
+ "retroflex": "minus",
459
+ "lateral": "minus",
460
+ "aspirated": "minus",
461
+ },
462
+ "ɾ": {
463
+ "place": "alveolar",
464
+ "manner": "tap",
465
+ "syllabic": "minus",
466
+ "voice": "plus",
467
+ "nasal": "minus",
468
+ "retroflex": "minus",
469
+ "lateral": "minus",
470
+ "aspirated": "minus",
471
+ },
472
+ "ɽ": {
473
+ "place": "retroflex",
474
+ "manner": "tap",
475
+ "syllabic": "minus",
476
+ "voice": "plus",
477
+ "nasal": "minus",
478
+ "retroflex": "plus",
479
+ "lateral": "minus",
480
+ "aspirated": "minus",
481
+ },
482
+ "ɸ": {
483
+ "place": "bilabial",
484
+ "manner": "fricative",
485
+ "syllabic": "minus",
486
+ "voice": "minus",
487
+ "nasal": "minus",
488
+ "retroflex": "minus",
489
+ "lateral": "minus",
490
+ "aspirated": "minus",
491
+ },
492
+ "β": {
493
+ "place": "bilabial",
494
+ "manner": "fricative",
495
+ "syllabic": "minus",
496
+ "voice": "plus",
497
+ "nasal": "minus",
498
+ "retroflex": "minus",
499
+ "lateral": "minus",
500
+ "aspirated": "minus",
501
+ },
502
+ "f": {
503
+ "place": "labiodental",
504
+ "manner": "fricative",
505
+ "syllabic": "minus",
506
+ "voice": "minus",
507
+ "nasal": "minus",
508
+ "retroflex": "minus",
509
+ "lateral": "minus",
510
+ "aspirated": "minus",
511
+ },
512
+ "v": {
513
+ "place": "labiodental",
514
+ "manner": "fricative",
515
+ "syllabic": "minus",
516
+ "voice": "plus",
517
+ "nasal": "minus",
518
+ "retroflex": "minus",
519
+ "lateral": "minus",
520
+ "aspirated": "minus",
521
+ },
522
+ "θ": {
523
+ "place": "dental",
524
+ "manner": "fricative",
525
+ "syllabic": "minus",
526
+ "voice": "minus",
527
+ "nasal": "minus",
528
+ "retroflex": "minus",
529
+ "lateral": "minus",
530
+ "aspirated": "minus",
531
+ },
532
+ "ð": {
533
+ "place": "dental",
534
+ "manner": "fricative",
535
+ "syllabic": "minus",
536
+ "voice": "plus",
537
+ "nasal": "minus",
538
+ "retroflex": "minus",
539
+ "lateral": "minus",
540
+ "aspirated": "minus",
541
+ },
542
+ "s": {
543
+ "place": "alveolar",
544
+ "manner": "fricative",
545
+ "syllabic": "minus",
546
+ "voice": "minus",
547
+ "nasal": "minus",
548
+ "retroflex": "minus",
549
+ "lateral": "minus",
550
+ "aspirated": "minus",
551
+ },
552
+ "z": {
553
+ "place": "alveolar",
554
+ "manner": "fricative",
555
+ "syllabic": "minus",
556
+ "voice": "plus",
557
+ "nasal": "minus",
558
+ "retroflex": "minus",
559
+ "lateral": "minus",
560
+ "aspirated": "minus",
561
+ },
562
+ "ʃ": {
563
+ "place": "palato-alveolar",
564
+ "manner": "fricative",
565
+ "syllabic": "minus",
566
+ "voice": "minus",
567
+ "nasal": "minus",
568
+ "retroflex": "minus",
569
+ "lateral": "minus",
570
+ "aspirated": "minus",
571
+ },
572
+ "ʒ": {
573
+ "place": "palato-alveolar",
574
+ "manner": "fricative",
575
+ "syllabic": "minus",
576
+ "voice": "plus",
577
+ "nasal": "minus",
578
+ "retroflex": "minus",
579
+ "lateral": "minus",
580
+ "aspirated": "minus",
581
+ },
582
+ "ʂ": {
583
+ "place": "retroflex",
584
+ "manner": "fricative",
585
+ "syllabic": "minus",
586
+ "voice": "minus",
587
+ "nasal": "minus",
588
+ "retroflex": "plus",
589
+ "lateral": "minus",
590
+ "aspirated": "minus",
591
+ },
592
+ "ʐ": {
593
+ "place": "retroflex",
594
+ "manner": "fricative",
595
+ "syllabic": "minus",
596
+ "voice": "plus",
597
+ "nasal": "minus",
598
+ "retroflex": "plus",
599
+ "lateral": "minus",
600
+ "aspirated": "minus",
601
+ },
602
+ "ç": {
603
+ "place": "palatal",
604
+ "manner": "fricative",
605
+ "syllabic": "minus",
606
+ "voice": "minus",
607
+ "nasal": "minus",
608
+ "retroflex": "minus",
609
+ "lateral": "minus",
610
+ "aspirated": "minus",
611
+ },
612
+ "ʝ": {
613
+ "place": "palatal",
614
+ "manner": "fricative",
615
+ "syllabic": "minus",
616
+ "voice": "plus",
617
+ "nasal": "minus",
618
+ "retroflex": "minus",
619
+ "lateral": "minus",
620
+ "aspirated": "minus",
621
+ },
622
+ "x": {
623
+ "place": "velar",
624
+ "manner": "fricative",
625
+ "syllabic": "minus",
626
+ "voice": "minus",
627
+ "nasal": "minus",
628
+ "retroflex": "minus",
629
+ "lateral": "minus",
630
+ "aspirated": "minus",
631
+ },
632
+ "ɣ": {
633
+ "place": "velar",
634
+ "manner": "fricative",
635
+ "syllabic": "minus",
636
+ "voice": "plus",
637
+ "nasal": "minus",
638
+ "retroflex": "minus",
639
+ "lateral": "minus",
640
+ "aspirated": "minus",
641
+ },
642
+ "χ": {
643
+ "place": "uvular",
644
+ "manner": "fricative",
645
+ "syllabic": "minus",
646
+ "voice": "minus",
647
+ "nasal": "minus",
648
+ "retroflex": "minus",
649
+ "lateral": "minus",
650
+ "aspirated": "minus",
651
+ },
652
+ "ʁ": {
653
+ "place": "uvular",
654
+ "manner": "fricative",
655
+ "syllabic": "minus",
656
+ "voice": "plus",
657
+ "nasal": "minus",
658
+ "retroflex": "minus",
659
+ "lateral": "minus",
660
+ "aspirated": "minus",
661
+ },
662
+ "ħ": {
663
+ "place": "pharyngeal",
664
+ "manner": "fricative",
665
+ "syllabic": "minus",
666
+ "voice": "minus",
667
+ "nasal": "minus",
668
+ "retroflex": "minus",
669
+ "lateral": "minus",
670
+ "aspirated": "minus",
671
+ },
672
+ "ʕ": {
673
+ "place": "pharyngeal",
674
+ "manner": "fricative",
675
+ "syllabic": "minus",
676
+ "voice": "plus",
677
+ "nasal": "minus",
678
+ "retroflex": "minus",
679
+ "lateral": "minus",
680
+ "aspirated": "minus",
681
+ },
682
+ "h": {
683
+ "place": "glottal",
684
+ "manner": "fricative",
685
+ "syllabic": "minus",
686
+ "voice": "minus",
687
+ "nasal": "minus",
688
+ "retroflex": "minus",
689
+ "lateral": "minus",
690
+ "aspirated": "minus",
691
+ },
692
+ "ɦ": {
693
+ "place": "glottal",
694
+ "manner": "fricative",
695
+ "syllabic": "minus",
696
+ "voice": "plus",
697
+ "nasal": "minus",
698
+ "retroflex": "minus",
699
+ "lateral": "minus",
700
+ "aspirated": "minus",
701
+ },
702
+ "ɬ": {
703
+ "place": "alveolar",
704
+ "manner": "fricative",
705
+ "syllabic": "minus",
706
+ "voice": "minus",
707
+ "nasal": "minus",
708
+ "retroflex": "minus",
709
+ "lateral": "plus",
710
+ "aspirated": "minus",
711
+ },
712
+ "ɮ": {
713
+ "place": "alveolar",
714
+ "manner": "fricative",
715
+ "syllabic": "minus",
716
+ "voice": "plus",
717
+ "nasal": "minus",
718
+ "retroflex": "minus",
719
+ "lateral": "plus",
720
+ "aspirated": "minus",
721
+ },
722
+ "ʋ": {
723
+ "place": "labiodental",
724
+ "manner": "approximant",
725
+ "syllabic": "minus",
726
+ "voice": "plus",
727
+ "nasal": "minus",
728
+ "retroflex": "minus",
729
+ "lateral": "minus",
730
+ "aspirated": "minus",
731
+ },
732
+ "ɹ": {
733
+ "place": "alveolar",
734
+ "manner": "approximant",
735
+ "syllabic": "minus",
736
+ "voice": "plus",
737
+ "nasal": "minus",
738
+ "retroflex": "minus",
739
+ "lateral": "minus",
740
+ "aspirated": "minus",
741
+ },
742
+ "ɻ": {
743
+ "place": "retroflex",
744
+ "manner": "approximant",
745
+ "syllabic": "minus",
746
+ "voice": "plus",
747
+ "nasal": "minus",
748
+ "retroflex": "plus",
749
+ "lateral": "minus",
750
+ "aspirated": "minus",
751
+ },
752
+ "j": {
753
+ "place": "palatal",
754
+ "manner": "approximant",
755
+ "syllabic": "minus",
756
+ "voice": "plus",
757
+ "nasal": "minus",
758
+ "retroflex": "minus",
759
+ "lateral": "minus",
760
+ "aspirated": "minus",
761
+ },
762
+ "ɰ": {
763
+ "place": "velar",
764
+ "manner": "approximant",
765
+ "syllabic": "minus",
766
+ "voice": "plus",
767
+ "nasal": "minus",
768
+ "retroflex": "minus",
769
+ "lateral": "minus",
770
+ "aspirated": "minus",
771
+ },
772
+ "l": {
773
+ "place": "alveolar",
774
+ "manner": "approximant",
775
+ "syllabic": "minus",
776
+ "voice": "plus",
777
+ "nasal": "minus",
778
+ "retroflex": "minus",
779
+ "lateral": "plus",
780
+ "aspirated": "minus",
781
+ },
782
+ "w": {
783
+ "place": "labiovelar",
784
+ "manner": "approximant",
785
+ "syllabic": "minus",
786
+ "voice": "plus",
787
+ "nasal": "minus",
788
+ "retroflex": "minus",
789
+ "lateral": "minus",
790
+ "aspirated": "minus",
791
+ },
792
+ # Vowels
793
+ "i": {
794
+ "place": "vowel",
795
+ "manner": "vowel2",
796
+ "syllabic": "plus",
797
+ "voice": "plus",
798
+ "nasal": "minus",
799
+ "retroflex": "minus",
800
+ "lateral": "minus",
801
+ "high": "high",
802
+ "back": "front",
803
+ "round": "minus",
804
+ "long": "minus",
805
+ "aspirated": "minus",
806
+ },
807
+ "y": {
808
+ "place": "vowel",
809
+ "manner": "vowel2",
810
+ "syllabic": "plus",
811
+ "voice": "plus",
812
+ "nasal": "minus",
813
+ "retroflex": "minus",
814
+ "lateral": "minus",
815
+ "high": "high",
816
+ "back": "front",
817
+ "round": "plus",
818
+ "long": "minus",
819
+ "aspirated": "minus",
820
+ },
821
+ "e": {
822
+ "place": "vowel",
823
+ "manner": "vowel2",
824
+ "syllabic": "plus",
825
+ "voice": "plus",
826
+ "nasal": "minus",
827
+ "retroflex": "minus",
828
+ "lateral": "minus",
829
+ "high": "mid",
830
+ "back": "front",
831
+ "round": "minus",
832
+ "long": "minus",
833
+ "aspirated": "minus",
834
+ },
835
+ "E": {
836
+ "place": "vowel",
837
+ "manner": "vowel2",
838
+ "syllabic": "plus",
839
+ "voice": "plus",
840
+ "nasal": "minus",
841
+ "retroflex": "minus",
842
+ "lateral": "minus",
843
+ "high": "mid",
844
+ "back": "front",
845
+ "round": "minus",
846
+ "long": "plus",
847
+ "aspirated": "minus",
848
+ },
849
+ "ø": {
850
+ "place": "vowel",
851
+ "manner": "vowel2",
852
+ "syllabic": "plus",
853
+ "voice": "plus",
854
+ "nasal": "minus",
855
+ "retroflex": "minus",
856
+ "lateral": "minus",
857
+ "high": "mid",
858
+ "back": "front",
859
+ "round": "plus",
860
+ "long": "minus",
861
+ "aspirated": "minus",
862
+ },
863
+ "ɛ": {
864
+ "place": "vowel",
865
+ "manner": "vowel2",
866
+ "syllabic": "plus",
867
+ "voice": "plus",
868
+ "nasal": "minus",
869
+ "retroflex": "minus",
870
+ "lateral": "minus",
871
+ "high": "mid",
872
+ "back": "front",
873
+ "round": "minus",
874
+ "long": "minus",
875
+ "aspirated": "minus",
876
+ },
877
+ "œ": {
878
+ "place": "vowel",
879
+ "manner": "vowel2",
880
+ "syllabic": "plus",
881
+ "voice": "plus",
882
+ "nasal": "minus",
883
+ "retroflex": "minus",
884
+ "lateral": "minus",
885
+ "high": "mid",
886
+ "back": "front",
887
+ "round": "plus",
888
+ "long": "minus",
889
+ "aspirated": "minus",
890
+ },
891
+ "æ": {
892
+ "place": "vowel",
893
+ "manner": "vowel2",
894
+ "syllabic": "plus",
895
+ "voice": "plus",
896
+ "nasal": "minus",
897
+ "retroflex": "minus",
898
+ "lateral": "minus",
899
+ "high": "low",
900
+ "back": "front",
901
+ "round": "minus",
902
+ "long": "minus",
903
+ "aspirated": "minus",
904
+ },
905
+ "a": {
906
+ "place": "vowel",
907
+ "manner": "vowel2",
908
+ "syllabic": "plus",
909
+ "voice": "plus",
910
+ "nasal": "minus",
911
+ "retroflex": "minus",
912
+ "lateral": "minus",
913
+ "high": "low",
914
+ "back": "front",
915
+ "round": "minus",
916
+ "long": "minus",
917
+ "aspirated": "minus",
918
+ },
919
+ "A": {
920
+ "place": "vowel",
921
+ "manner": "vowel2",
922
+ "syllabic": "plus",
923
+ "voice": "plus",
924
+ "nasal": "minus",
925
+ "retroflex": "minus",
926
+ "lateral": "minus",
927
+ "high": "low",
928
+ "back": "front",
929
+ "round": "minus",
930
+ "long": "plus",
931
+ "aspirated": "minus",
932
+ },
933
+ "ɨ": {
934
+ "place": "vowel",
935
+ "manner": "vowel2",
936
+ "syllabic": "plus",
937
+ "voice": "plus",
938
+ "nasal": "minus",
939
+ "retroflex": "minus",
940
+ "lateral": "minus",
941
+ "high": "high",
942
+ "back": "central",
943
+ "round": "minus",
944
+ "long": "minus",
945
+ "aspirated": "minus",
946
+ },
947
+ "ʉ": {
948
+ "place": "vowel",
949
+ "manner": "vowel2",
950
+ "syllabic": "plus",
951
+ "voice": "plus",
952
+ "nasal": "minus",
953
+ "retroflex": "minus",
954
+ "lateral": "minus",
955
+ "high": "high",
956
+ "back": "central",
957
+ "round": "plus",
958
+ "long": "minus",
959
+ "aspirated": "minus",
960
+ },
961
+ "ə": {
962
+ "place": "vowel",
963
+ "manner": "vowel2",
964
+ "syllabic": "plus",
965
+ "voice": "plus",
966
+ "nasal": "minus",
967
+ "retroflex": "minus",
968
+ "lateral": "minus",
969
+ "high": "mid",
970
+ "back": "central",
971
+ "round": "minus",
972
+ "long": "minus",
973
+ "aspirated": "minus",
974
+ },
975
+ "u": {
976
+ "place": "vowel",
977
+ "manner": "vowel2",
978
+ "syllabic": "plus",
979
+ "voice": "plus",
980
+ "nasal": "minus",
981
+ "retroflex": "minus",
982
+ "lateral": "minus",
983
+ "high": "high",
984
+ "back": "back",
985
+ "round": "plus",
986
+ "long": "minus",
987
+ "aspirated": "minus",
988
+ },
989
+ "U": {
990
+ "place": "vowel",
991
+ "manner": "vowel2",
992
+ "syllabic": "plus",
993
+ "voice": "plus",
994
+ "nasal": "minus",
995
+ "retroflex": "minus",
996
+ "lateral": "minus",
997
+ "high": "high",
998
+ "back": "back",
999
+ "round": "plus",
1000
+ "long": "plus",
1001
+ "aspirated": "minus",
1002
+ },
1003
+ "o": {
1004
+ "place": "vowel",
1005
+ "manner": "vowel2",
1006
+ "syllabic": "plus",
1007
+ "voice": "plus",
1008
+ "nasal": "minus",
1009
+ "retroflex": "minus",
1010
+ "lateral": "minus",
1011
+ "high": "mid",
1012
+ "back": "back",
1013
+ "round": "plus",
1014
+ "long": "minus",
1015
+ "aspirated": "minus",
1016
+ },
1017
+ "O": {
1018
+ "place": "vowel",
1019
+ "manner": "vowel2",
1020
+ "syllabic": "plus",
1021
+ "voice": "plus",
1022
+ "nasal": "minus",
1023
+ "retroflex": "minus",
1024
+ "lateral": "minus",
1025
+ "high": "mid",
1026
+ "back": "back",
1027
+ "round": "plus",
1028
+ "long": "plus",
1029
+ "aspirated": "minus",
1030
+ },
1031
+ "ɔ": {
1032
+ "place": "vowel",
1033
+ "manner": "vowel2",
1034
+ "syllabic": "plus",
1035
+ "voice": "plus",
1036
+ "nasal": "minus",
1037
+ "retroflex": "minus",
1038
+ "lateral": "minus",
1039
+ "high": "mid",
1040
+ "back": "back",
1041
+ "round": "plus",
1042
+ "long": "minus",
1043
+ "aspirated": "minus",
1044
+ },
1045
+ "ɒ": {
1046
+ "place": "vowel",
1047
+ "manner": "vowel2",
1048
+ "syllabic": "plus",
1049
+ "voice": "plus",
1050
+ "nasal": "minus",
1051
+ "retroflex": "minus",
1052
+ "lateral": "minus",
1053
+ "high": "low",
1054
+ "back": "back",
1055
+ "round": "minus",
1056
+ "long": "minus",
1057
+ "aspirated": "minus",
1058
+ },
1059
+ "I": {
1060
+ "place": "vowel",
1061
+ "manner": "vowel2",
1062
+ "syllabic": "plus",
1063
+ "voice": "plus",
1064
+ "nasal": "minus",
1065
+ "retroflex": "minus",
1066
+ "lateral": "minus",
1067
+ "high": "high",
1068
+ "back": "front",
1069
+ "round": "minus",
1070
+ "long": "plus",
1071
+ "aspirated": "minus",
1072
+ },
1073
+ }
1074
+
1075
+ # === Algorithm ===
1076
+
1077
+
1078
+ def align(str1, str2, epsilon=0):
1079
+ """
1080
+ Compute the alignment of two phonetic strings.
1081
+
1082
+ :param str str1: First string to be aligned
1083
+ :param str str2: Second string to be aligned
1084
+
1085
+ :type epsilon: float (0.0 to 1.0)
1086
+ :param epsilon: Adjusts threshold similarity score for near-optimal alignments
1087
+
1088
+ :rtype: list(list(tuple(str, str)))
1089
+ :return: Alignment(s) of str1 and str2
1090
+
1091
+ (Kondrak 2002: 51)
1092
+ """
1093
+ if np is None:
1094
+ raise ImportError("You need numpy in order to use the align function")
1095
+
1096
+ assert 0.0 <= epsilon <= 1.0, "Epsilon must be between 0.0 and 1.0."
1097
+ m = len(str1)
1098
+ n = len(str2)
1099
+ # This includes Kondrak's initialization of row 0 and column 0 to all 0s.
1100
+ S = np.zeros((m + 1, n + 1), dtype=float)
1101
+
1102
+ # If i <= 1 or j <= 1, don't allow expansions as it doesn't make sense,
1103
+ # and breaks array and string indices. Make sure they never get chosen
1104
+ # by setting them to -inf.
1105
+ for i in range(1, m + 1):
1106
+ for j in range(1, n + 1):
1107
+ edit1 = S[i - 1, j] + sigma_skip(str1[i - 1])
1108
+ edit2 = S[i, j - 1] + sigma_skip(str2[j - 1])
1109
+ edit3 = S[i - 1, j - 1] + sigma_sub(str1[i - 1], str2[j - 1])
1110
+ if i > 1:
1111
+ edit4 = S[i - 2, j - 1] + sigma_exp(str2[j - 1], str1[i - 2 : i])
1112
+ else:
1113
+ edit4 = -inf
1114
+ if j > 1:
1115
+ edit5 = S[i - 1, j - 2] + sigma_exp(str1[i - 1], str2[j - 2 : j])
1116
+ else:
1117
+ edit5 = -inf
1118
+ S[i, j] = max(edit1, edit2, edit3, edit4, edit5, 0)
1119
+
1120
+ T = (1 - epsilon) * np.amax(S) # Threshold score for near-optimal alignments
1121
+
1122
+ alignments = []
1123
+ for i in range(1, m + 1):
1124
+ for j in range(1, n + 1):
1125
+ if S[i, j] >= T:
1126
+ alignments.append(_retrieve(i, j, 0, S, T, str1, str2, []))
1127
+ return alignments
1128
+
1129
+
1130
+ def _retrieve(i, j, s, S, T, str1, str2, out):
1131
+ """
1132
+ Retrieve the path through the similarity matrix S starting at (i, j).
1133
+
1134
+ :rtype: list(tuple(str, str))
1135
+ :return: Alignment of str1 and str2
1136
+ """
1137
+ if S[i, j] == 0:
1138
+ return out
1139
+ else:
1140
+ if j > 1 and S[i - 1, j - 2] + sigma_exp(str1[i - 1], str2[j - 2 : j]) + s >= T:
1141
+ out.insert(0, (str1[i - 1], str2[j - 2 : j]))
1142
+ _retrieve(
1143
+ i - 1,
1144
+ j - 2,
1145
+ s + sigma_exp(str1[i - 1], str2[j - 2 : j]),
1146
+ S,
1147
+ T,
1148
+ str1,
1149
+ str2,
1150
+ out,
1151
+ )
1152
+ elif (
1153
+ i > 1 and S[i - 2, j - 1] + sigma_exp(str2[j - 1], str1[i - 2 : i]) + s >= T
1154
+ ):
1155
+ out.insert(0, (str1[i - 2 : i], str2[j - 1]))
1156
+ _retrieve(
1157
+ i - 2,
1158
+ j - 1,
1159
+ s + sigma_exp(str2[j - 1], str1[i - 2 : i]),
1160
+ S,
1161
+ T,
1162
+ str1,
1163
+ str2,
1164
+ out,
1165
+ )
1166
+ elif S[i, j - 1] + sigma_skip(str2[j - 1]) + s >= T:
1167
+ out.insert(0, ("-", str2[j - 1]))
1168
+ _retrieve(i, j - 1, s + sigma_skip(str2[j - 1]), S, T, str1, str2, out)
1169
+ elif S[i - 1, j] + sigma_skip(str1[i - 1]) + s >= T:
1170
+ out.insert(0, (str1[i - 1], "-"))
1171
+ _retrieve(i - 1, j, s + sigma_skip(str1[i - 1]), S, T, str1, str2, out)
1172
+ elif S[i - 1, j - 1] + sigma_sub(str1[i - 1], str2[j - 1]) + s >= T:
1173
+ out.insert(0, (str1[i - 1], str2[j - 1]))
1174
+ _retrieve(
1175
+ i - 1,
1176
+ j - 1,
1177
+ s + sigma_sub(str1[i - 1], str2[j - 1]),
1178
+ S,
1179
+ T,
1180
+ str1,
1181
+ str2,
1182
+ out,
1183
+ )
1184
+ return out
1185
+
1186
+
1187
+ def sigma_skip(p):
1188
+ """
1189
+ Returns score of an indel of P.
1190
+
1191
+ (Kondrak 2002: 54)
1192
+ """
1193
+ return C_skip
1194
+
1195
+
1196
+ def sigma_sub(p, q):
1197
+ """
1198
+ Returns score of a substitution of P with Q.
1199
+
1200
+ (Kondrak 2002: 54)
1201
+ """
1202
+ return C_sub - delta(p, q) - V(p) - V(q)
1203
+
1204
+
1205
+ def sigma_exp(p, q):
1206
+ """
1207
+ Returns score of an expansion/compression.
1208
+
1209
+ (Kondrak 2002: 54)
1210
+ """
1211
+ q1 = q[0]
1212
+ q2 = q[1]
1213
+ return C_exp - delta(p, q1) - delta(p, q2) - V(p) - max(V(q1), V(q2))
1214
+
1215
+
1216
+ def delta(p, q):
1217
+ """
1218
+ Return weighted sum of difference between P and Q.
1219
+
1220
+ (Kondrak 2002: 54)
1221
+ """
1222
+ features = R(p, q)
1223
+ total = 0
1224
+ for f in features:
1225
+ total += diff(p, q, f) * salience[f]
1226
+ return total
1227
+
1228
+
1229
+ def diff(p, q, f):
1230
+ """
1231
+ Returns difference between phonetic segments P and Q for feature F.
1232
+
1233
+ (Kondrak 2002: 52, 54)
1234
+ """
1235
+ p_features, q_features = feature_matrix[p], feature_matrix[q]
1236
+ return abs(similarity_matrix[p_features[f]] - similarity_matrix[q_features[f]])
1237
+
1238
+
1239
+ def R(p, q):
1240
+ """
1241
+ Return relevant features for segment comparison.
1242
+
1243
+ (Kondrak 2002: 54)
1244
+ """
1245
+ if p in consonants or q in consonants:
1246
+ return R_c
1247
+ return R_v
1248
+
1249
+
1250
+ def V(p):
1251
+ """
1252
+ Return vowel weight if P is vowel.
1253
+
1254
+ (Kondrak 2002: 54)
1255
+ """
1256
+ if p in consonants:
1257
+ return 0
1258
+ return C_vwl
1259
+
1260
+
1261
+ # === Test ===
1262
+
1263
+
1264
+ def demo():
1265
+ """
1266
+ A demonstration of the result of aligning phonetic sequences
1267
+ used in Kondrak's (2002) dissertation.
1268
+ """
1269
+ data = [pair.split(",") for pair in cognate_data.split("\n")]
1270
+ for pair in data:
1271
+ alignment = align(pair[0], pair[1])[0]
1272
+ alignment = [f"({a[0]}, {a[1]})" for a in alignment]
1273
+ alignment = " ".join(alignment)
1274
+ print(f"{pair[0]} ~ {pair[1]} : {alignment}")
1275
+
1276
+
1277
+ cognate_data = """jo,ʒə
1278
+ tu,ty
1279
+ nosotros,nu
1280
+ kjen,ki
1281
+ ke,kwa
1282
+ todos,tu
1283
+ una,ən
1284
+ dos,dø
1285
+ tres,trwa
1286
+ ombre,om
1287
+ arbol,arbrə
1288
+ pluma,plym
1289
+ kabeθa,kap
1290
+ boka,buʃ
1291
+ pje,pje
1292
+ koraθon,kœr
1293
+ ber,vwar
1294
+ benir,vənir
1295
+ deθir,dir
1296
+ pobre,povrə
1297
+ ðis,dIzes
1298
+ ðæt,das
1299
+ wat,vas
1300
+ nat,nixt
1301
+ loŋ,laŋ
1302
+ mæn,man
1303
+ fleʃ,flajʃ
1304
+ bləd,blyt
1305
+ feðər,fEdər
1306
+ hær,hAr
1307
+ ir,Or
1308
+ aj,awgə
1309
+ nowz,nAzə
1310
+ mawθ,munt
1311
+ təŋ,tsuŋə
1312
+ fut,fys
1313
+ nij,knI
1314
+ hænd,hant
1315
+ hart,herts
1316
+ livər,lEbər
1317
+ ænd,ante
1318
+ æt,ad
1319
+ blow,flAre
1320
+ ir,awris
1321
+ ijt,edere
1322
+ fiʃ,piʃkis
1323
+ flow,fluere
1324
+ staɾ,stella
1325
+ ful,plenus
1326
+ græs,gramen
1327
+ hart,kordis
1328
+ horn,korny
1329
+ aj,ego
1330
+ nij,genU
1331
+ məðər,mAter
1332
+ mawntən,mons
1333
+ nejm,nomen
1334
+ njuw,nowus
1335
+ wən,unus
1336
+ rawnd,rotundus
1337
+ sow,suere
1338
+ sit,sedere
1339
+ θrij,tres
1340
+ tuwθ,dentis
1341
+ θin,tenwis
1342
+ kinwawa,kenuaʔ
1343
+ nina,nenah
1344
+ napewa,napɛw
1345
+ wapimini,wapemen
1346
+ namesa,namɛʔs
1347
+ okimawa,okemaw
1348
+ ʃiʃipa,seʔsep
1349
+ ahkohkwa,ahkɛh
1350
+ pematesiweni,pematesewen
1351
+ asenja,aʔsɛn"""
1352
+
1353
+ if __name__ == "__main__":
1354
+ demo()
venv/lib/python3.10/site-packages/nltk/metrics/association.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Ngram Association Measures
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Joel Nothman <[email protected]>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ Provides scoring functions for a number of association measures through a
10
+ generic, abstract implementation in ``NgramAssocMeasures``, and n-specific
11
+ ``BigramAssocMeasures`` and ``TrigramAssocMeasures``.
12
+ """
13
+
14
+ import math as _math
15
+ from abc import ABCMeta, abstractmethod
16
+ from functools import reduce
17
+
18
+ _log2 = lambda x: _math.log2(x)
19
+ _ln = _math.log
20
+
21
+ _product = lambda s: reduce(lambda x, y: x * y, s)
22
+
23
+ _SMALL = 1e-20
24
+
25
+ try:
26
+ from scipy.stats import fisher_exact
27
+ except ImportError:
28
+
29
+ def fisher_exact(*_args, **_kwargs):
30
+ raise NotImplementedError
31
+
32
+
33
+ ### Indices to marginals arguments:
34
+
35
+ NGRAM = 0
36
+ """Marginals index for the ngram count"""
37
+
38
+ UNIGRAMS = -2
39
+ """Marginals index for a tuple of each unigram count"""
40
+
41
+ TOTAL = -1
42
+ """Marginals index for the number of words in the data"""
43
+
44
+
45
+ class NgramAssocMeasures(metaclass=ABCMeta):
46
+ """
47
+ An abstract class defining a collection of generic association measures.
48
+ Each public method returns a score, taking the following arguments::
49
+
50
+ score_fn(count_of_ngram,
51
+ (count_of_n-1gram_1, ..., count_of_n-1gram_j),
52
+ (count_of_n-2gram_1, ..., count_of_n-2gram_k),
53
+ ...,
54
+ (count_of_1gram_1, ..., count_of_1gram_n),
55
+ count_of_total_words)
56
+
57
+ See ``BigramAssocMeasures`` and ``TrigramAssocMeasures``
58
+
59
+ Inheriting classes should define a property _n, and a method _contingency
60
+ which calculates contingency values from marginals in order for all
61
+ association measures defined here to be usable.
62
+ """
63
+
64
+ _n = 0
65
+
66
+ @staticmethod
67
+ @abstractmethod
68
+ def _contingency(*marginals):
69
+ """Calculates values of a contingency table from marginal values."""
70
+ raise NotImplementedError(
71
+ "The contingency table is not available" "in the general ngram case"
72
+ )
73
+
74
+ @staticmethod
75
+ @abstractmethod
76
+ def _marginals(*contingency):
77
+ """Calculates values of contingency table marginals from its values."""
78
+ raise NotImplementedError(
79
+ "The contingency table is not available" "in the general ngram case"
80
+ )
81
+
82
+ @classmethod
83
+ def _expected_values(cls, cont):
84
+ """Calculates expected values for a contingency table."""
85
+ n_all = sum(cont)
86
+ bits = [1 << i for i in range(cls._n)]
87
+
88
+ # For each contingency table cell
89
+ for i in range(len(cont)):
90
+ # Yield the expected value
91
+ yield (
92
+ _product(
93
+ sum(cont[x] for x in range(2**cls._n) if (x & j) == (i & j))
94
+ for j in bits
95
+ )
96
+ / (n_all ** (cls._n - 1))
97
+ )
98
+
99
+ @staticmethod
100
+ def raw_freq(*marginals):
101
+ """Scores ngrams by their frequency"""
102
+ return marginals[NGRAM] / marginals[TOTAL]
103
+
104
+ @classmethod
105
+ def student_t(cls, *marginals):
106
+ """Scores ngrams using Student's t test with independence hypothesis
107
+ for unigrams, as in Manning and Schutze 5.3.1.
108
+ """
109
+ return (
110
+ marginals[NGRAM]
111
+ - _product(marginals[UNIGRAMS]) / (marginals[TOTAL] ** (cls._n - 1))
112
+ ) / (marginals[NGRAM] + _SMALL) ** 0.5
113
+
114
+ @classmethod
115
+ def chi_sq(cls, *marginals):
116
+ """Scores ngrams using Pearson's chi-square as in Manning and Schutze
117
+ 5.3.3.
118
+ """
119
+ cont = cls._contingency(*marginals)
120
+ exps = cls._expected_values(cont)
121
+ return sum((obs - exp) ** 2 / (exp + _SMALL) for obs, exp in zip(cont, exps))
122
+
123
+ @staticmethod
124
+ def mi_like(*marginals, **kwargs):
125
+ """Scores ngrams using a variant of mutual information. The keyword
126
+ argument power sets an exponent (default 3) for the numerator. No
127
+ logarithm of the result is calculated.
128
+ """
129
+ return marginals[NGRAM] ** kwargs.get("power", 3) / _product(
130
+ marginals[UNIGRAMS]
131
+ )
132
+
133
+ @classmethod
134
+ def pmi(cls, *marginals):
135
+ """Scores ngrams by pointwise mutual information, as in Manning and
136
+ Schutze 5.4.
137
+ """
138
+ return _log2(marginals[NGRAM] * marginals[TOTAL] ** (cls._n - 1)) - _log2(
139
+ _product(marginals[UNIGRAMS])
140
+ )
141
+
142
+ @classmethod
143
+ def likelihood_ratio(cls, *marginals):
144
+ """Scores ngrams using likelihood ratios as in Manning and Schutze 5.3.4."""
145
+ cont = cls._contingency(*marginals)
146
+ return 2 * sum(
147
+ obs * _ln(obs / (exp + _SMALL) + _SMALL)
148
+ for obs, exp in zip(cont, cls._expected_values(cont))
149
+ )
150
+
151
+ @classmethod
152
+ def poisson_stirling(cls, *marginals):
153
+ """Scores ngrams using the Poisson-Stirling measure."""
154
+ exp = _product(marginals[UNIGRAMS]) / (marginals[TOTAL] ** (cls._n - 1))
155
+ return marginals[NGRAM] * (_log2(marginals[NGRAM] / exp) - 1)
156
+
157
+ @classmethod
158
+ def jaccard(cls, *marginals):
159
+ """Scores ngrams using the Jaccard index."""
160
+ cont = cls._contingency(*marginals)
161
+ return cont[0] / sum(cont[:-1])
162
+
163
+
164
+ class BigramAssocMeasures(NgramAssocMeasures):
165
+ """
166
+ A collection of bigram association measures. Each association measure
167
+ is provided as a function with three arguments::
168
+
169
+ bigram_score_fn(n_ii, (n_ix, n_xi), n_xx)
170
+
171
+ The arguments constitute the marginals of a contingency table, counting
172
+ the occurrences of particular events in a corpus. The letter i in the
173
+ suffix refers to the appearance of the word in question, while x indicates
174
+ the appearance of any word. Thus, for example:
175
+
176
+ - n_ii counts ``(w1, w2)``, i.e. the bigram being scored
177
+ - n_ix counts ``(w1, *)``
178
+ - n_xi counts ``(*, w2)``
179
+ - n_xx counts ``(*, *)``, i.e. any bigram
180
+
181
+ This may be shown with respect to a contingency table::
182
+
183
+ w1 ~w1
184
+ ------ ------
185
+ w2 | n_ii | n_oi | = n_xi
186
+ ------ ------
187
+ ~w2 | n_io | n_oo |
188
+ ------ ------
189
+ = n_ix TOTAL = n_xx
190
+ """
191
+
192
+ _n = 2
193
+
194
+ @staticmethod
195
+ def _contingency(n_ii, n_ix_xi_tuple, n_xx):
196
+ """Calculates values of a bigram contingency table from marginal values."""
197
+ (n_ix, n_xi) = n_ix_xi_tuple
198
+ n_oi = n_xi - n_ii
199
+ n_io = n_ix - n_ii
200
+ return (n_ii, n_oi, n_io, n_xx - n_ii - n_oi - n_io)
201
+
202
+ @staticmethod
203
+ def _marginals(n_ii, n_oi, n_io, n_oo):
204
+ """Calculates values of contingency table marginals from its values."""
205
+ return (n_ii, (n_oi + n_ii, n_io + n_ii), n_oo + n_oi + n_io + n_ii)
206
+
207
+ @staticmethod
208
+ def _expected_values(cont):
209
+ """Calculates expected values for a contingency table."""
210
+ n_xx = sum(cont)
211
+ # For each contingency table cell
212
+ for i in range(4):
213
+ yield (cont[i] + cont[i ^ 1]) * (cont[i] + cont[i ^ 2]) / n_xx
214
+
215
+ @classmethod
216
+ def phi_sq(cls, *marginals):
217
+ """Scores bigrams using phi-square, the square of the Pearson correlation
218
+ coefficient.
219
+ """
220
+ n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
221
+
222
+ return (n_ii * n_oo - n_io * n_oi) ** 2 / (
223
+ (n_ii + n_io) * (n_ii + n_oi) * (n_io + n_oo) * (n_oi + n_oo)
224
+ )
225
+
226
+ @classmethod
227
+ def chi_sq(cls, n_ii, n_ix_xi_tuple, n_xx):
228
+ """Scores bigrams using chi-square, i.e. phi-sq multiplied by the number
229
+ of bigrams, as in Manning and Schutze 5.3.3.
230
+ """
231
+ (n_ix, n_xi) = n_ix_xi_tuple
232
+ return n_xx * cls.phi_sq(n_ii, (n_ix, n_xi), n_xx)
233
+
234
+ @classmethod
235
+ def fisher(cls, *marginals):
236
+ """Scores bigrams using Fisher's Exact Test (Pedersen 1996). Less
237
+ sensitive to small counts than PMI or Chi Sq, but also more expensive
238
+ to compute. Requires scipy.
239
+ """
240
+
241
+ n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
242
+
243
+ (odds, pvalue) = fisher_exact([[n_ii, n_io], [n_oi, n_oo]], alternative="less")
244
+ return pvalue
245
+
246
+ @staticmethod
247
+ def dice(n_ii, n_ix_xi_tuple, n_xx):
248
+ """Scores bigrams using Dice's coefficient."""
249
+ (n_ix, n_xi) = n_ix_xi_tuple
250
+ return 2 * n_ii / (n_ix + n_xi)
251
+
252
+
253
+ class TrigramAssocMeasures(NgramAssocMeasures):
254
+ """
255
+ A collection of trigram association measures. Each association measure
256
+ is provided as a function with four arguments::
257
+
258
+ trigram_score_fn(n_iii,
259
+ (n_iix, n_ixi, n_xii),
260
+ (n_ixx, n_xix, n_xxi),
261
+ n_xxx)
262
+
263
+ The arguments constitute the marginals of a contingency table, counting
264
+ the occurrences of particular events in a corpus. The letter i in the
265
+ suffix refers to the appearance of the word in question, while x indicates
266
+ the appearance of any word. Thus, for example:
267
+
268
+ - n_iii counts ``(w1, w2, w3)``, i.e. the trigram being scored
269
+ - n_ixx counts ``(w1, *, *)``
270
+ - n_xxx counts ``(*, *, *)``, i.e. any trigram
271
+ """
272
+
273
+ _n = 3
274
+
275
+ @staticmethod
276
+ def _contingency(n_iii, n_iix_tuple, n_ixx_tuple, n_xxx):
277
+ """Calculates values of a trigram contingency table (or cube) from
278
+ marginal values.
279
+ >>> TrigramAssocMeasures._contingency(1, (1, 1, 1), (1, 73, 1), 2000)
280
+ (1, 0, 0, 0, 0, 72, 0, 1927)
281
+ """
282
+ (n_iix, n_ixi, n_xii) = n_iix_tuple
283
+ (n_ixx, n_xix, n_xxi) = n_ixx_tuple
284
+ n_oii = n_xii - n_iii
285
+ n_ioi = n_ixi - n_iii
286
+ n_iio = n_iix - n_iii
287
+ n_ooi = n_xxi - n_iii - n_oii - n_ioi
288
+ n_oio = n_xix - n_iii - n_oii - n_iio
289
+ n_ioo = n_ixx - n_iii - n_ioi - n_iio
290
+ n_ooo = n_xxx - n_iii - n_oii - n_ioi - n_iio - n_ooi - n_oio - n_ioo
291
+
292
+ return (n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo)
293
+
294
+ @staticmethod
295
+ def _marginals(*contingency):
296
+ """Calculates values of contingency table marginals from its values.
297
+ >>> TrigramAssocMeasures._marginals(1, 0, 0, 0, 0, 72, 0, 1927)
298
+ (1, (1, 1, 1), (1, 73, 1), 2000)
299
+ """
300
+ n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo = contingency
301
+ return (
302
+ n_iii,
303
+ (n_iii + n_iio, n_iii + n_ioi, n_iii + n_oii),
304
+ (
305
+ n_iii + n_ioi + n_iio + n_ioo,
306
+ n_iii + n_oii + n_iio + n_oio,
307
+ n_iii + n_oii + n_ioi + n_ooi,
308
+ ),
309
+ sum(contingency),
310
+ )
311
+
312
+
313
+ class QuadgramAssocMeasures(NgramAssocMeasures):
314
+ """
315
+ A collection of quadgram association measures. Each association measure
316
+ is provided as a function with five arguments::
317
+
318
+ trigram_score_fn(n_iiii,
319
+ (n_iiix, n_iixi, n_ixii, n_xiii),
320
+ (n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix),
321
+ (n_ixxx, n_xixx, n_xxix, n_xxxi),
322
+ n_all)
323
+
324
+ The arguments constitute the marginals of a contingency table, counting
325
+ the occurrences of particular events in a corpus. The letter i in the
326
+ suffix refers to the appearance of the word in question, while x indicates
327
+ the appearance of any word. Thus, for example:
328
+
329
+ - n_iiii counts ``(w1, w2, w3, w4)``, i.e. the quadgram being scored
330
+ - n_ixxi counts ``(w1, *, *, w4)``
331
+ - n_xxxx counts ``(*, *, *, *)``, i.e. any quadgram
332
+ """
333
+
334
+ _n = 4
335
+
336
+ @staticmethod
337
+ def _contingency(n_iiii, n_iiix_tuple, n_iixx_tuple, n_ixxx_tuple, n_xxxx):
338
+ """Calculates values of a quadgram contingency table from
339
+ marginal values.
340
+ """
341
+ (n_iiix, n_iixi, n_ixii, n_xiii) = n_iiix_tuple
342
+ (n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix) = n_iixx_tuple
343
+ (n_ixxx, n_xixx, n_xxix, n_xxxi) = n_ixxx_tuple
344
+ n_oiii = n_xiii - n_iiii
345
+ n_ioii = n_ixii - n_iiii
346
+ n_iioi = n_iixi - n_iiii
347
+ n_ooii = n_xxii - n_iiii - n_oiii - n_ioii
348
+ n_oioi = n_xixi - n_iiii - n_oiii - n_iioi
349
+ n_iooi = n_ixxi - n_iiii - n_ioii - n_iioi
350
+ n_oooi = n_xxxi - n_iiii - n_oiii - n_ioii - n_iioi - n_ooii - n_iooi - n_oioi
351
+ n_iiio = n_iiix - n_iiii
352
+ n_oiio = n_xiix - n_iiii - n_oiii - n_iiio
353
+ n_ioio = n_ixix - n_iiii - n_ioii - n_iiio
354
+ n_ooio = n_xxix - n_iiii - n_oiii - n_ioii - n_iiio - n_ooii - n_ioio - n_oiio
355
+ n_iioo = n_iixx - n_iiii - n_iioi - n_iiio
356
+ n_oioo = n_xixx - n_iiii - n_oiii - n_iioi - n_iiio - n_oioi - n_oiio - n_iioo
357
+ n_iooo = n_ixxx - n_iiii - n_ioii - n_iioi - n_iiio - n_iooi - n_iioo - n_ioio
358
+ n_oooo = (
359
+ n_xxxx
360
+ - n_iiii
361
+ - n_oiii
362
+ - n_ioii
363
+ - n_iioi
364
+ - n_ooii
365
+ - n_oioi
366
+ - n_iooi
367
+ - n_oooi
368
+ - n_iiio
369
+ - n_oiio
370
+ - n_ioio
371
+ - n_ooio
372
+ - n_iioo
373
+ - n_oioo
374
+ - n_iooo
375
+ )
376
+
377
+ return (
378
+ n_iiii,
379
+ n_oiii,
380
+ n_ioii,
381
+ n_ooii,
382
+ n_iioi,
383
+ n_oioi,
384
+ n_iooi,
385
+ n_oooi,
386
+ n_iiio,
387
+ n_oiio,
388
+ n_ioio,
389
+ n_ooio,
390
+ n_iioo,
391
+ n_oioo,
392
+ n_iooo,
393
+ n_oooo,
394
+ )
395
+
396
+ @staticmethod
397
+ def _marginals(*contingency):
398
+ """Calculates values of contingency table marginals from its values.
399
+ QuadgramAssocMeasures._marginals(1, 0, 2, 46, 552, 825, 2577, 34967, 1, 0, 2, 48, 7250, 9031, 28585, 356653)
400
+ (1, (2, 553, 3, 1), (7804, 6, 3132, 1378, 49, 2), (38970, 17660, 100, 38970), 440540)
401
+ """
402
+ (
403
+ n_iiii,
404
+ n_oiii,
405
+ n_ioii,
406
+ n_ooii,
407
+ n_iioi,
408
+ n_oioi,
409
+ n_iooi,
410
+ n_oooi,
411
+ n_iiio,
412
+ n_oiio,
413
+ n_ioio,
414
+ n_ooio,
415
+ n_iioo,
416
+ n_oioo,
417
+ n_iooo,
418
+ n_oooo,
419
+ ) = contingency
420
+
421
+ n_iiix = n_iiii + n_iiio
422
+ n_iixi = n_iiii + n_iioi
423
+ n_ixii = n_iiii + n_ioii
424
+ n_xiii = n_iiii + n_oiii
425
+
426
+ n_iixx = n_iiii + n_iioi + n_iiio + n_iioo
427
+ n_ixix = n_iiii + n_ioii + n_iiio + n_ioio
428
+ n_ixxi = n_iiii + n_ioii + n_iioi + n_iooi
429
+ n_xixi = n_iiii + n_oiii + n_iioi + n_oioi
430
+ n_xxii = n_iiii + n_oiii + n_ioii + n_ooii
431
+ n_xiix = n_iiii + n_oiii + n_iiio + n_oiio
432
+
433
+ n_ixxx = n_iiii + n_ioii + n_iioi + n_iiio + n_iooi + n_iioo + n_ioio + n_iooo
434
+ n_xixx = n_iiii + n_oiii + n_iioi + n_iiio + n_oioi + n_oiio + n_iioo + n_oioo
435
+ n_xxix = n_iiii + n_oiii + n_ioii + n_iiio + n_ooii + n_ioio + n_oiio + n_ooio
436
+ n_xxxi = n_iiii + n_oiii + n_ioii + n_iioi + n_ooii + n_iooi + n_oioi + n_oooi
437
+
438
+ n_all = sum(contingency)
439
+
440
+ return (
441
+ n_iiii,
442
+ (n_iiix, n_iixi, n_ixii, n_xiii),
443
+ (n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix),
444
+ (n_ixxx, n_xixx, n_xxix, n_xxxi),
445
+ n_all,
446
+ )
447
+
448
+
449
+ class ContingencyMeasures:
450
+ """Wraps NgramAssocMeasures classes such that the arguments of association
451
+ measures are contingency table values rather than marginals.
452
+ """
453
+
454
+ def __init__(self, measures):
455
+ """Constructs a ContingencyMeasures given a NgramAssocMeasures class"""
456
+ self.__class__.__name__ = "Contingency" + measures.__class__.__name__
457
+ for k in dir(measures):
458
+ if k.startswith("__"):
459
+ continue
460
+ v = getattr(measures, k)
461
+ if not k.startswith("_"):
462
+ v = self._make_contingency_fn(measures, v)
463
+ setattr(self, k, v)
464
+
465
+ @staticmethod
466
+ def _make_contingency_fn(measures, old_fn):
467
+ """From an association measure function, produces a new function which
468
+ accepts contingency table values as its arguments.
469
+ """
470
+
471
+ def res(*contingency):
472
+ return old_fn(*measures._marginals(*contingency))
473
+
474
+ res.__doc__ = old_fn.__doc__
475
+ res.__name__ = old_fn.__name__
476
+ return res