peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/_fftlog_backend.py
import numpy as np | |
from warnings import warn | |
from ._basic import rfft, irfft | |
from ..special import loggamma, poch | |
from scipy._lib._array_api import array_namespace, copy | |
__all__ = ['fht', 'ifht', 'fhtoffset'] | |
# constants | |
LN_2 = np.log(2) | |
def fht(a, dln, mu, offset=0.0, bias=0.0): | |
xp = array_namespace(a) | |
# size of transform | |
n = a.shape[-1] | |
# bias input array | |
if bias != 0: | |
# a_q(r) = a(r) (r/r_c)^{-q} | |
j_c = (n-1)/2 | |
j = xp.arange(n, dtype=xp.float64) | |
a = a * xp.exp(-bias*(j - j_c)*dln) | |
# compute FHT coefficients | |
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias)) | |
# transform | |
A = _fhtq(a, u, xp=xp) | |
# bias output array | |
if bias != 0: | |
# A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q} | |
A *= xp.exp(-bias*((j - j_c)*dln + offset)) | |
return A | |
def ifht(A, dln, mu, offset=0.0, bias=0.0): | |
xp = array_namespace(A) | |
# size of transform | |
n = A.shape[-1] | |
# bias input array | |
if bias != 0: | |
# A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q} | |
j_c = (n-1)/2 | |
j = xp.arange(n, dtype=xp.float64) | |
A = A * xp.exp(bias*((j - j_c)*dln + offset)) | |
# compute FHT coefficients | |
u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True)) | |
# transform | |
a = _fhtq(A, u, inverse=True, xp=xp) | |
# bias output array | |
if bias != 0: | |
# a(r) = a_q(r) (r/r_c)^{q} | |
a /= xp.exp(-bias*(j - j_c)*dln) | |
return a | |
def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False): | |
"""Compute the coefficient array for a fast Hankel transform.""" | |
lnkr, q = offset, bias | |
# Hankel transform coefficients | |
# u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr)) | |
# with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2) | |
xp = (mu+1+q)/2 | |
xm = (mu+1-q)/2 | |
y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1) | |
u = np.empty(n//2+1, dtype=complex) | |
v = np.empty(n//2+1, dtype=complex) | |
u.imag[:] = y | |
u.real[:] = xm | |
loggamma(u, out=v) | |
u.real[:] = xp | |
loggamma(u, out=u) | |
y *= 2*(LN_2 - lnkr) | |
u.real -= v.real | |
u.real += LN_2*q | |
u.imag += v.imag | |
u.imag += y | |
np.exp(u, out=u) | |
# fix last coefficient to be real | |
u.imag[-1] = 0 | |
# deal with special cases | |
if not np.isfinite(u[0]): | |
# write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm) | |
# poch() handles special cases for negative integers correctly | |
u[0] = 2**q * poch(xm, xp-xm) | |
# the coefficient may be inf or 0, meaning the transform or the | |
# inverse transform, respectively, is singular | |
# check for singular transform or singular inverse transform | |
if np.isinf(u[0]) and not inverse: | |
warn('singular transform; consider changing the bias', stacklevel=3) | |
# fix coefficient to obtain (potentially correct) transform anyway | |
u = copy(u) | |
u[0] = 0 | |
elif u[0] == 0 and inverse: | |
warn('singular inverse transform; consider changing the bias', stacklevel=3) | |
# fix coefficient to obtain (potentially correct) inverse anyway | |
u = copy(u) | |
u[0] = np.inf | |
return u | |
def fhtoffset(dln, mu, initial=0.0, bias=0.0): | |
"""Return optimal offset for a fast Hankel transform. | |
Returns an offset close to `initial` that fulfils the low-ringing | |
condition of [1]_ for the fast Hankel transform `fht` with logarithmic | |
spacing `dln`, order `mu` and bias `bias`. | |
Parameters | |
---------- | |
dln : float | |
Uniform logarithmic spacing of the transform. | |
mu : float | |
Order of the Hankel transform, any positive or negative real number. | |
initial : float, optional | |
Initial value for the offset. Returns the closest value that fulfils | |
the low-ringing condition. | |
bias : float, optional | |
Exponent of power law bias, any positive or negative real number. | |
Returns | |
------- | |
offset : float | |
Optimal offset of the uniform logarithmic spacing of the transform that | |
fulfils a low-ringing condition. | |
Examples | |
-------- | |
>>> from scipy.fft import fhtoffset | |
>>> dln = 0.1 | |
>>> mu = 2.0 | |
>>> initial = 0.5 | |
>>> bias = 0.0 | |
>>> offset = fhtoffset(dln, mu, initial, bias) | |
>>> offset | |
0.5454581477676637 | |
See Also | |
-------- | |
fht : Definition of the fast Hankel transform. | |
References | |
---------- | |
.. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191) | |
""" | |
lnkr, q = initial, bias | |
xp = (mu+1+q)/2 | |
xm = (mu+1-q)/2 | |
y = np.pi/(2*dln) | |
zp = loggamma(xp + 1j*y) | |
zm = loggamma(xm + 1j*y) | |
arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi | |
return lnkr + (arg - np.round(arg))*dln | |
def _fhtq(a, u, inverse=False, *, xp=None): | |
"""Compute the biased fast Hankel transform. | |
This is the basic FFTLog routine. | |
""" | |
if xp is None: | |
xp = np | |
# size of transform | |
n = a.shape[-1] | |
# biased fast Hankel transform via real FFT | |
A = rfft(a, axis=-1) | |
if not inverse: | |
# forward transform | |
A *= u | |
else: | |
# backward transform | |
A /= xp.conj(u) | |
A = irfft(A, n, axis=-1) | |
A = xp.flip(A, axis=-1) | |
return A | |