peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/_helper.py
from functools import update_wrapper, lru_cache | |
import inspect | |
from ._pocketfft import helper as _helper | |
import numpy as np | |
from scipy._lib._array_api import array_namespace | |
def next_fast_len(target, real=False): | |
"""Find the next fast size of input data to ``fft``, for zero-padding, etc. | |
SciPy's FFT algorithms gain their speed by a recursive divide and conquer | |
strategy. This relies on efficient functions for small prime factors of the | |
input length. Thus, the transforms are fastest when using composites of the | |
prime factors handled by the fft implementation. If there are efficient | |
functions for all radices <= `n`, then the result will be a number `x` | |
>= ``target`` with only prime factors < `n`. (Also known as `n`-smooth | |
numbers) | |
Parameters | |
---------- | |
target : int | |
Length to start searching from. Must be a positive integer. | |
real : bool, optional | |
True if the FFT involves real input or output (e.g., `rfft` or `hfft` | |
but not `fft`). Defaults to False. | |
Returns | |
------- | |
out : int | |
The smallest fast length greater than or equal to ``target``. | |
Notes | |
----- | |
The result of this function may change in future as performance | |
considerations change, for example, if new prime factors are added. | |
Calling `fft` or `ifft` with real input data performs an ``'R2C'`` | |
transform internally. | |
Examples | |
-------- | |
On a particular machine, an FFT of prime length takes 11.4 ms: | |
>>> from scipy import fft | |
>>> import numpy as np | |
>>> rng = np.random.default_rng() | |
>>> min_len = 93059 # prime length is worst case for speed | |
>>> a = rng.standard_normal(min_len) | |
>>> b = fft.fft(a) | |
Zero-padding to the next regular length reduces computation time to | |
1.6 ms, a speedup of 7.3 times: | |
>>> fft.next_fast_len(min_len, real=True) | |
93312 | |
>>> b = fft.fft(a, 93312) | |
Rounding up to the next power of 2 is not optimal, taking 3.0 ms to | |
compute; 1.9 times longer than the size given by ``next_fast_len``: | |
>>> b = fft.fft(a, 131072) | |
""" | |
pass | |
# Directly wrap the c-function good_size but take the docstring etc., from the | |
# next_fast_len function above | |
_sig = inspect.signature(next_fast_len) | |
next_fast_len = update_wrapper(lru_cache(_helper.good_size), next_fast_len) | |
next_fast_len.__wrapped__ = _helper.good_size | |
next_fast_len.__signature__ = _sig | |
def _init_nd_shape_and_axes(x, shape, axes): | |
"""Handle shape and axes arguments for N-D transforms. | |
Returns the shape and axes in a standard form, taking into account negative | |
values and checking for various potential errors. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
shape : int or array_like of ints or None | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If `shape` is -1, the size of the corresponding dimension of `x` is | |
used. | |
axes : int or array_like of ints or None | |
Axes along which the calculation is computed. | |
The default is over all axes. | |
Negative indices are automatically converted to their positive | |
counterparts. | |
Returns | |
------- | |
shape : tuple | |
The shape of the result as a tuple of integers. | |
axes : list | |
Axes along which the calculation is computed, as a list of integers. | |
""" | |
x = np.asarray(x) | |
return _helper._init_nd_shape_and_axes(x, shape, axes) | |
def fftfreq(n, d=1.0, *, xp=None, device=None): | |
"""Return the Discrete Fourier Transform sample frequencies. | |
The returned float array `f` contains the frequency bin centers in cycles | |
per unit of the sample spacing (with zero at the start). For instance, if | |
the sample spacing is in seconds, then the frequency unit is cycles/second. | |
Given a window length `n` and a sample spacing `d`:: | |
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even | |
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd | |
Parameters | |
---------- | |
n : int | |
Window length. | |
d : scalar, optional | |
Sample spacing (inverse of the sampling rate). Defaults to 1. | |
xp : array_namespace, optional | |
The namespace for the return array. Default is None, where NumPy is used. | |
device : device, optional | |
The device for the return array. | |
Only valid when `xp.fft.fftfreq` implements the device parameter. | |
Returns | |
------- | |
f : ndarray | |
Array of length `n` containing the sample frequencies. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import scipy.fft | |
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) | |
>>> fourier = scipy.fft.fft(signal) | |
>>> n = signal.size | |
>>> timestep = 0.1 | |
>>> freq = scipy.fft.fftfreq(n, d=timestep) | |
>>> freq | |
array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25]) | |
""" | |
xp = np if xp is None else xp | |
# numpy does not yet support the `device` keyword | |
# `xp.__name__ != 'numpy'` should be removed when numpy is compatible | |
if hasattr(xp, 'fft') and xp.__name__ != 'numpy': | |
return xp.fft.fftfreq(n, d=d, device=device) | |
if device is not None: | |
raise ValueError('device parameter is not supported for input array type') | |
return np.fft.fftfreq(n, d=d) | |
def rfftfreq(n, d=1.0, *, xp=None, device=None): | |
"""Return the Discrete Fourier Transform sample frequencies | |
(for usage with rfft, irfft). | |
The returned float array `f` contains the frequency bin centers in cycles | |
per unit of the sample spacing (with zero at the start). For instance, if | |
the sample spacing is in seconds, then the frequency unit is cycles/second. | |
Given a window length `n` and a sample spacing `d`:: | |
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even | |
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd | |
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) | |
the Nyquist frequency component is considered to be positive. | |
Parameters | |
---------- | |
n : int | |
Window length. | |
d : scalar, optional | |
Sample spacing (inverse of the sampling rate). Defaults to 1. | |
xp : array_namespace, optional | |
The namespace for the return array. Default is None, where NumPy is used. | |
device : device, optional | |
The device for the return array. | |
Only valid when `xp.fft.rfftfreq` implements the device parameter. | |
Returns | |
------- | |
f : ndarray | |
Array of length ``n//2 + 1`` containing the sample frequencies. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> import scipy.fft | |
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) | |
>>> fourier = scipy.fft.rfft(signal) | |
>>> n = signal.size | |
>>> sample_rate = 100 | |
>>> freq = scipy.fft.fftfreq(n, d=1./sample_rate) | |
>>> freq | |
array([ 0., 10., 20., ..., -30., -20., -10.]) | |
>>> freq = scipy.fft.rfftfreq(n, d=1./sample_rate) | |
>>> freq | |
array([ 0., 10., 20., 30., 40., 50.]) | |
""" | |
xp = np if xp is None else xp | |
# numpy does not yet support the `device` keyword | |
# `xp.__name__ != 'numpy'` should be removed when numpy is compatible | |
if hasattr(xp, 'fft') and xp.__name__ != 'numpy': | |
return xp.fft.rfftfreq(n, d=d, device=device) | |
if device is not None: | |
raise ValueError('device parameter is not supported for input array type') | |
return np.fft.rfftfreq(n, d=d) | |
def fftshift(x, axes=None): | |
"""Shift the zero-frequency component to the center of the spectrum. | |
This function swaps half-spaces for all axes listed (defaults to all). | |
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axes : int or shape tuple, optional | |
Axes over which to shift. Default is None, which shifts all axes. | |
Returns | |
------- | |
y : ndarray | |
The shifted array. | |
See Also | |
-------- | |
ifftshift : The inverse of `fftshift`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> freqs = np.fft.fftfreq(10, 0.1) | |
>>> freqs | |
array([ 0., 1., 2., ..., -3., -2., -1.]) | |
>>> np.fft.fftshift(freqs) | |
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) | |
Shift the zero-frequency component only along the second axis: | |
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) | |
>>> freqs | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
>>> np.fft.fftshift(freqs, axes=(1,)) | |
array([[ 2., 0., 1.], | |
[-4., 3., 4.], | |
[-1., -3., -2.]]) | |
""" | |
xp = array_namespace(x) | |
if hasattr(xp, 'fft'): | |
return xp.fft.fftshift(x, axes=axes) | |
x = np.asarray(x) | |
y = np.fft.fftshift(x, axes=axes) | |
return xp.asarray(y) | |
def ifftshift(x, axes=None): | |
"""The inverse of `fftshift`. Although identical for even-length `x`, the | |
functions differ by one sample for odd-length `x`. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axes : int or shape tuple, optional | |
Axes over which to calculate. Defaults to None, which shifts all axes. | |
Returns | |
------- | |
y : ndarray | |
The shifted array. | |
See Also | |
-------- | |
fftshift : Shift zero-frequency component to the center of the spectrum. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) | |
>>> freqs | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
>>> np.fft.ifftshift(np.fft.fftshift(freqs)) | |
array([[ 0., 1., 2.], | |
[ 3., 4., -4.], | |
[-3., -2., -1.]]) | |
""" | |
xp = array_namespace(x) | |
if hasattr(xp, 'fft'): | |
return xp.fft.ifftshift(x, axes=axes) | |
x = np.asarray(x) | |
y = np.fft.ifftshift(x, axes=axes) | |
return xp.asarray(y) | |