peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/_pocketfft
/basic.py
""" | |
Discrete Fourier Transforms - basic.py | |
""" | |
import numpy as np | |
import functools | |
from . import pypocketfft as pfft | |
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied, | |
_fix_shape, _fix_shape_1d, _normalization, | |
_workers) | |
def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
""" Return discrete Fourier transform of real or complex sequence. """ | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
overwrite_x = overwrite_x or _datacopied(tmp, x) | |
norm = _normalization(norm, forward) | |
workers = _workers(workers) | |
if n is not None: | |
tmp, copied = _fix_shape_1d(tmp, n, axis) | |
overwrite_x = overwrite_x or copied | |
elif tmp.shape[axis] < 1: | |
message = f"invalid number of data points ({tmp.shape[axis]}) specified" | |
raise ValueError(message) | |
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None) | |
return pfft.c2c(tmp, (axis,), forward, norm, out, workers) | |
fft = functools.partial(c2c, True) | |
fft.__name__ = 'fft' | |
ifft = functools.partial(c2c, False) | |
ifft.__name__ = 'ifft' | |
def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
""" | |
Discrete Fourier transform of a real sequence. | |
""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
norm = _normalization(norm, forward) | |
workers = _workers(workers) | |
if not np.isrealobj(tmp): | |
raise TypeError("x must be a real sequence") | |
if n is not None: | |
tmp, _ = _fix_shape_1d(tmp, n, axis) | |
elif tmp.shape[axis] < 1: | |
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified") | |
# Note: overwrite_x is not utilised | |
return pfft.r2c(tmp, (axis,), forward, norm, None, workers) | |
rfft = functools.partial(r2c, True) | |
rfft.__name__ = 'rfft' | |
ihfft = functools.partial(r2c, False) | |
ihfft.__name__ = 'ihfft' | |
def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
""" | |
Return inverse discrete Fourier transform of real sequence x. | |
""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
norm = _normalization(norm, forward) | |
workers = _workers(workers) | |
# TODO: Optimize for hermitian and real? | |
if np.isrealobj(tmp): | |
tmp = tmp + 0.j | |
# Last axis utilizes hermitian symmetry | |
if n is None: | |
n = (tmp.shape[axis] - 1) * 2 | |
if n < 1: | |
raise ValueError(f"Invalid number of data points ({n}) specified") | |
else: | |
tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis) | |
# Note: overwrite_x is not utilized | |
return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers) | |
hfft = functools.partial(c2r, True) | |
hfft.__name__ = 'hfft' | |
irfft = functools.partial(c2r, False) | |
irfft.__name__ = 'irfft' | |
def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None, | |
*, plan=None): | |
""" | |
2-D discrete Fourier transform of a Hermitian sequence | |
""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
return hfftn(x, s, axes, norm, overwrite_x, workers) | |
def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None, | |
*, plan=None): | |
""" | |
2-D discrete inverse Fourier transform of a Hermitian sequence | |
""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
return ihfftn(x, s, axes, norm, overwrite_x, workers) | |
def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
""" | |
Return multidimensional discrete Fourier transform. | |
""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) | |
overwrite_x = overwrite_x or _datacopied(tmp, x) | |
workers = _workers(workers) | |
if len(axes) == 0: | |
return x | |
tmp, copied = _fix_shape(tmp, shape, axes) | |
overwrite_x = overwrite_x or copied | |
norm = _normalization(norm, forward) | |
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None) | |
return pfft.c2c(tmp, axes, forward, norm, out, workers) | |
fftn = functools.partial(c2cn, True) | |
fftn.__name__ = 'fftn' | |
ifftn = functools.partial(c2cn, False) | |
ifftn.__name__ = 'ifftn' | |
def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
"""Return multidimensional discrete Fourier transform of real input""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
if not np.isrealobj(tmp): | |
raise TypeError("x must be a real sequence") | |
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) | |
tmp, _ = _fix_shape(tmp, shape, axes) | |
norm = _normalization(norm, forward) | |
workers = _workers(workers) | |
if len(axes) == 0: | |
raise ValueError("at least 1 axis must be transformed") | |
# Note: overwrite_x is not utilized | |
return pfft.r2c(tmp, axes, forward, norm, None, workers) | |
rfftn = functools.partial(r2cn, True) | |
rfftn.__name__ = 'rfftn' | |
ihfftn = functools.partial(r2cn, False) | |
ihfftn.__name__ = 'ihfftn' | |
def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False, | |
workers=None, *, plan=None): | |
"""Multidimensional inverse discrete fourier transform with real output""" | |
if plan is not None: | |
raise NotImplementedError('Passing a precomputed plan is not yet ' | |
'supported by scipy.fft functions') | |
tmp = _asfarray(x) | |
# TODO: Optimize for hermitian and real? | |
if np.isrealobj(tmp): | |
tmp = tmp + 0.j | |
noshape = s is None | |
shape, axes = _init_nd_shape_and_axes(tmp, s, axes) | |
if len(axes) == 0: | |
raise ValueError("at least 1 axis must be transformed") | |
shape = list(shape) | |
if noshape: | |
shape[-1] = (x.shape[axes[-1]] - 1) * 2 | |
norm = _normalization(norm, forward) | |
workers = _workers(workers) | |
# Last axis utilizes hermitian symmetry | |
lastsize = shape[-1] | |
shape[-1] = (shape[-1] // 2) + 1 | |
tmp, _ = tuple(_fix_shape(tmp, shape, axes)) | |
# Note: overwrite_x is not utilized | |
return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers) | |
hfftn = functools.partial(c2rn, True) | |
hfftn.__name__ = 'hfftn' | |
irfftn = functools.partial(c2rn, False) | |
irfftn.__name__ = 'irfftn' | |
def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False): | |
"""FFT of a real sequence, returning fftpack half complex format""" | |
tmp = _asfarray(x) | |
overwrite_x = overwrite_x or _datacopied(tmp, x) | |
norm = _normalization(norm, forward) | |
workers = _workers(None) | |
if tmp.dtype.kind == 'c': | |
raise TypeError('x must be a real sequence') | |
if n is not None: | |
tmp, copied = _fix_shape_1d(tmp, n, axis) | |
overwrite_x = overwrite_x or copied | |
elif tmp.shape[axis] < 1: | |
raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified") | |
out = (tmp if overwrite_x else None) | |
return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers) | |
rfft_fftpack = functools.partial(r2r_fftpack, True) | |
rfft_fftpack.__name__ = 'rfft_fftpack' | |
irfft_fftpack = functools.partial(r2r_fftpack, False) | |
irfft_fftpack.__name__ = 'irfft_fftpack' | |