peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fft
/_pocketfft
/helper.py
from numbers import Number | |
import operator | |
import os | |
import threading | |
import contextlib | |
import numpy as np | |
from scipy._lib._util import copy_if_needed | |
# good_size is exposed (and used) from this import | |
from .pypocketfft import good_size | |
__all__ = ['good_size', 'set_workers', 'get_workers'] | |
_config = threading.local() | |
_cpu_count = os.cpu_count() | |
def _iterable_of_int(x, name=None): | |
"""Convert ``x`` to an iterable sequence of int | |
Parameters | |
---------- | |
x : value, or sequence of values, convertible to int | |
name : str, optional | |
Name of the argument being converted, only used in the error message | |
Returns | |
------- | |
y : ``List[int]`` | |
""" | |
if isinstance(x, Number): | |
x = (x,) | |
try: | |
x = [operator.index(a) for a in x] | |
except TypeError as e: | |
name = name or "value" | |
raise ValueError(f"{name} must be a scalar or iterable of integers") from e | |
return x | |
def _init_nd_shape_and_axes(x, shape, axes): | |
"""Handles shape and axes arguments for nd transforms""" | |
noshape = shape is None | |
noaxes = axes is None | |
if not noaxes: | |
axes = _iterable_of_int(axes, 'axes') | |
axes = [a + x.ndim if a < 0 else a for a in axes] | |
if any(a >= x.ndim or a < 0 for a in axes): | |
raise ValueError("axes exceeds dimensionality of input") | |
if len(set(axes)) != len(axes): | |
raise ValueError("all axes must be unique") | |
if not noshape: | |
shape = _iterable_of_int(shape, 'shape') | |
if axes and len(axes) != len(shape): | |
raise ValueError("when given, axes and shape arguments" | |
" have to be of the same length") | |
if noaxes: | |
if len(shape) > x.ndim: | |
raise ValueError("shape requires more axes than are present") | |
axes = range(x.ndim - len(shape), x.ndim) | |
shape = [x.shape[a] if s == -1 else s for s, a in zip(shape, axes)] | |
elif noaxes: | |
shape = list(x.shape) | |
axes = range(x.ndim) | |
else: | |
shape = [x.shape[a] for a in axes] | |
if any(s < 1 for s in shape): | |
raise ValueError( | |
f"invalid number of data points ({shape}) specified") | |
return tuple(shape), list(axes) | |
def _asfarray(x): | |
""" | |
Convert to array with floating or complex dtype. | |
float16 values are also promoted to float32. | |
""" | |
if not hasattr(x, "dtype"): | |
x = np.asarray(x) | |
if x.dtype == np.float16: | |
return np.asarray(x, np.float32) | |
elif x.dtype.kind not in 'fc': | |
return np.asarray(x, np.float64) | |
# Require native byte order | |
dtype = x.dtype.newbyteorder('=') | |
# Always align input | |
copy = True if not x.flags['ALIGNED'] else copy_if_needed | |
return np.array(x, dtype=dtype, copy=copy) | |
def _datacopied(arr, original): | |
""" | |
Strict check for `arr` not sharing any data with `original`, | |
under the assumption that arr = asarray(original) | |
""" | |
if arr is original: | |
return False | |
if not isinstance(original, np.ndarray) and hasattr(original, '__array__'): | |
return False | |
return arr.base is None | |
def _fix_shape(x, shape, axes): | |
"""Internal auxiliary function for _raw_fft, _raw_fftnd.""" | |
must_copy = False | |
# Build an nd slice with the dimensions to be read from x | |
index = [slice(None)]*x.ndim | |
for n, ax in zip(shape, axes): | |
if x.shape[ax] >= n: | |
index[ax] = slice(0, n) | |
else: | |
index[ax] = slice(0, x.shape[ax]) | |
must_copy = True | |
index = tuple(index) | |
if not must_copy: | |
return x[index], False | |
s = list(x.shape) | |
for n, axis in zip(shape, axes): | |
s[axis] = n | |
z = np.zeros(s, x.dtype) | |
z[index] = x[index] | |
return z, True | |
def _fix_shape_1d(x, n, axis): | |
if n < 1: | |
raise ValueError( | |
f"invalid number of data points ({n}) specified") | |
return _fix_shape(x, (n,), (axis,)) | |
_NORM_MAP = {None: 0, 'backward': 0, 'ortho': 1, 'forward': 2} | |
def _normalization(norm, forward): | |
"""Returns the pypocketfft normalization mode from the norm argument""" | |
try: | |
inorm = _NORM_MAP[norm] | |
return inorm if forward else (2 - inorm) | |
except KeyError: | |
raise ValueError( | |
f'Invalid norm value {norm!r}, should ' | |
'be "backward", "ortho" or "forward"') from None | |
def _workers(workers): | |
if workers is None: | |
return getattr(_config, 'default_workers', 1) | |
if workers < 0: | |
if workers >= -_cpu_count: | |
workers += 1 + _cpu_count | |
else: | |
raise ValueError(f"workers value out of range; got {workers}, must not be" | |
f" less than {-_cpu_count}") | |
elif workers == 0: | |
raise ValueError("workers must not be zero") | |
return workers | |
def set_workers(workers): | |
"""Context manager for the default number of workers used in `scipy.fft` | |
Parameters | |
---------- | |
workers : int | |
The default number of workers to use | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy import fft, signal | |
>>> rng = np.random.default_rng() | |
>>> x = rng.standard_normal((128, 64)) | |
>>> with fft.set_workers(4): | |
... y = signal.fftconvolve(x, x) | |
""" | |
old_workers = get_workers() | |
_config.default_workers = _workers(operator.index(workers)) | |
try: | |
yield | |
finally: | |
_config.default_workers = old_workers | |
def get_workers(): | |
"""Returns the default number of workers within the current context | |
Examples | |
-------- | |
>>> from scipy import fft | |
>>> fft.get_workers() | |
1 | |
>>> with fft.set_workers(4): | |
... fft.get_workers() | |
4 | |
""" | |
return getattr(_config, 'default_workers', 1) | |