peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fftpack
/_basic.py
""" | |
Discrete Fourier Transforms - _basic.py | |
""" | |
# Created by Pearu Peterson, August,September 2002 | |
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft', | |
'fft2','ifft2'] | |
from scipy.fft import _pocketfft | |
from ._helper import _good_shape | |
def fft(x, n=None, axis=-1, overwrite_x=False): | |
""" | |
Return discrete Fourier transform of real or complex sequence. | |
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where | |
``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``. | |
Parameters | |
---------- | |
x : array_like | |
Array to Fourier transform. | |
n : int, optional | |
Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is | |
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The | |
default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the fft's are computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
z : complex ndarray | |
with the elements:: | |
[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even | |
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd | |
where:: | |
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1 | |
See Also | |
-------- | |
ifft : Inverse FFT | |
rfft : FFT of a real sequence | |
Notes | |
----- | |
The packing of the result is "standard": If ``A = fft(a, n)``, then | |
``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the | |
positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency | |
terms, in order of decreasingly negative frequency. So ,for an 8-point | |
transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1]. | |
To rearrange the fft output so that the zero-frequency component is | |
centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`. | |
Both single and double precision routines are implemented. Half precision | |
inputs will be converted to single precision. Non-floating-point inputs | |
will be converted to double precision. Long-double precision inputs are | |
not supported. | |
This function is most efficient when `n` is a power of two, and least | |
efficient when `n` is prime. | |
Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``. | |
If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real. | |
If the data type of `x` is real, a "real FFT" algorithm is automatically | |
used, which roughly halves the computation time. To increase efficiency | |
a little further, use `rfft`, which does the same calculation, but only | |
outputs half of the symmetrical spectrum. If the data is both real and | |
symmetrical, the `dct` can again double the efficiency by generating | |
half of the spectrum from half of the signal. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import fft, ifft | |
>>> x = np.arange(5) | |
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy. | |
True | |
""" | |
return _pocketfft.fft(x, n, axis, None, overwrite_x) | |
def ifft(x, n=None, axis=-1, overwrite_x=False): | |
""" | |
Return discrete inverse Fourier transform of real or complex sequence. | |
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where | |
``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``. | |
Parameters | |
---------- | |
x : array_like | |
Transformed data to invert. | |
n : int, optional | |
Length of the inverse Fourier transform. If ``n < x.shape[axis]``, | |
`x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded. | |
The default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the ifft's are computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
ifft : ndarray of floats | |
The inverse discrete Fourier transform. | |
See Also | |
-------- | |
fft : Forward FFT | |
Notes | |
----- | |
Both single and double precision routines are implemented. Half precision | |
inputs will be converted to single precision. Non-floating-point inputs | |
will be converted to double precision. Long-double precision inputs are | |
not supported. | |
This function is most efficient when `n` is a power of two, and least | |
efficient when `n` is prime. | |
If the data type of `x` is real, a "real IFFT" algorithm is automatically | |
used, which roughly halves the computation time. | |
Examples | |
-------- | |
>>> from scipy.fftpack import fft, ifft | |
>>> import numpy as np | |
>>> x = np.arange(5) | |
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy. | |
True | |
""" | |
return _pocketfft.ifft(x, n, axis, None, overwrite_x) | |
def rfft(x, n=None, axis=-1, overwrite_x=False): | |
""" | |
Discrete Fourier transform of a real sequence. | |
Parameters | |
---------- | |
x : array_like, real-valued | |
The data to transform. | |
n : int, optional | |
Defines the length of the Fourier transform. If `n` is not specified | |
(the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``, | |
`x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded. | |
axis : int, optional | |
The axis along which the transform is applied. The default is the | |
last axis. | |
overwrite_x : bool, optional | |
If set to true, the contents of `x` can be overwritten. Default is | |
False. | |
Returns | |
------- | |
z : real ndarray | |
The returned real array contains:: | |
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even | |
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd | |
where:: | |
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n) | |
j = 0..n-1 | |
See Also | |
-------- | |
fft, irfft, scipy.fft.rfft | |
Notes | |
----- | |
Within numerical accuracy, ``y == rfft(irfft(y))``. | |
Both single and double precision routines are implemented. Half precision | |
inputs will be converted to single precision. Non-floating-point inputs | |
will be converted to double precision. Long-double precision inputs are | |
not supported. | |
To get an output with a complex datatype, consider using the newer | |
function `scipy.fft.rfft`. | |
Examples | |
-------- | |
>>> from scipy.fftpack import fft, rfft | |
>>> a = [9, -9, 1, 3] | |
>>> fft(a) | |
array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j]) | |
>>> rfft(a) | |
array([ 4., 8., 12., 16.]) | |
""" | |
return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x) | |
def irfft(x, n=None, axis=-1, overwrite_x=False): | |
""" | |
Return inverse discrete Fourier transform of real sequence x. | |
The contents of `x` are interpreted as the output of the `rfft` | |
function. | |
Parameters | |
---------- | |
x : array_like | |
Transformed data to invert. | |
n : int, optional | |
Length of the inverse Fourier transform. | |
If n < x.shape[axis], x is truncated. | |
If n > x.shape[axis], x is zero-padded. | |
The default results in n = x.shape[axis]. | |
axis : int, optional | |
Axis along which the ifft's are computed; the default is over | |
the last axis (i.e., axis=-1). | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
irfft : ndarray of floats | |
The inverse discrete Fourier transform. | |
See Also | |
-------- | |
rfft, ifft, scipy.fft.irfft | |
Notes | |
----- | |
The returned real array contains:: | |
[y(0),y(1),...,y(n-1)] | |
where for n is even:: | |
y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k]) | |
* exp(sqrt(-1)*j*k* 2*pi/n) | |
+ c.c. + x[0] + (-1)**(j) x[n-1]) | |
and for n is odd:: | |
y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k]) | |
* exp(sqrt(-1)*j*k* 2*pi/n) | |
+ c.c. + x[0]) | |
c.c. denotes complex conjugate of preceding expression. | |
For details on input parameters, see `rfft`. | |
To process (conjugate-symmetric) frequency-domain data with a complex | |
datatype, consider using the newer function `scipy.fft.irfft`. | |
Examples | |
-------- | |
>>> from scipy.fftpack import rfft, irfft | |
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0] | |
>>> irfft(a) | |
array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473]) | |
>>> irfft(rfft(a)) | |
array([1., 2., 3., 4., 5.]) | |
""" | |
return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x) | |
def fftn(x, shape=None, axes=None, overwrite_x=False): | |
""" | |
Return multidimensional discrete Fourier transform. | |
The returned array contains:: | |
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1] | |
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i) | |
where d = len(x.shape) and n = x.shape. | |
Parameters | |
---------- | |
x : array_like | |
The (N-D) array to transform. | |
shape : int or array_like of ints or None, optional | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros. | |
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to | |
length ``shape[i]``. | |
If any element of `shape` is -1, the size of the corresponding | |
dimension of `x` is used. | |
axes : int or array_like of ints or None, optional | |
The axes of `x` (`y` if `shape` is not None) along which the | |
transform is applied. | |
The default is over all axes. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed. Default is False. | |
Returns | |
------- | |
y : complex-valued N-D NumPy array | |
The (N-D) DFT of the input array. | |
See Also | |
-------- | |
ifftn | |
Notes | |
----- | |
If ``x`` is real-valued, then | |
``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``. | |
Both single and double precision routines are implemented. Half precision | |
inputs will be converted to single precision. Non-floating-point inputs | |
will be converted to double precision. Long-double precision inputs are | |
not supported. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import fftn, ifftn | |
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16)) | |
>>> np.allclose(y, fftn(ifftn(y))) | |
True | |
""" | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.fftn(x, shape, axes, None, overwrite_x) | |
def ifftn(x, shape=None, axes=None, overwrite_x=False): | |
""" | |
Return inverse multidimensional discrete Fourier transform. | |
The sequence can be of an arbitrary type. | |
The returned array contains:: | |
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1] | |
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i) | |
where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``. | |
For description of parameters see `fftn`. | |
See Also | |
-------- | |
fftn : for detailed information. | |
Examples | |
-------- | |
>>> from scipy.fftpack import fftn, ifftn | |
>>> import numpy as np | |
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16)) | |
>>> np.allclose(y, ifftn(fftn(y))) | |
True | |
""" | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.ifftn(x, shape, axes, None, overwrite_x) | |
def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False): | |
""" | |
2-D discrete Fourier transform. | |
Return the 2-D discrete Fourier transform of the 2-D argument | |
`x`. | |
See Also | |
-------- | |
fftn : for detailed information. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import fft2, ifft2 | |
>>> y = np.mgrid[:5, :5][0] | |
>>> y | |
array([[0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, 3], | |
[4, 4, 4, 4, 4]]) | |
>>> np.allclose(y, ifft2(fft2(y))) | |
True | |
""" | |
return fftn(x,shape,axes,overwrite_x) | |
def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False): | |
""" | |
2-D discrete inverse Fourier transform of real or complex sequence. | |
Return inverse 2-D discrete Fourier transform of | |
arbitrary type sequence x. | |
See `ifft` for more information. | |
See Also | |
-------- | |
fft2, ifft | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import fft2, ifft2 | |
>>> y = np.mgrid[:5, :5][0] | |
>>> y | |
array([[0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1], | |
[2, 2, 2, 2, 2], | |
[3, 3, 3, 3, 3], | |
[4, 4, 4, 4, 4]]) | |
>>> np.allclose(y, fft2(ifft2(y))) | |
True | |
""" | |
return ifftn(x,shape,axes,overwrite_x) | |