peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/fftpack
/_realtransforms.py
""" | |
Real spectrum transforms (DCT, DST, MDCT) | |
""" | |
__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn'] | |
from scipy.fft import _pocketfft | |
from ._helper import _good_shape | |
_inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4} | |
def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False): | |
""" | |
Return multidimensional Discrete Cosine Transform along the specified axes. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DCT (see Notes). Default type is 2. | |
shape : int or array_like of ints or None, optional | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros. | |
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to | |
length ``shape[i]``. | |
If any element of `shape` is -1, the size of the corresponding | |
dimension of `x` is used. | |
axes : int or array_like of ints or None, optional | |
Axes along which the DCT is computed. | |
The default is over all axes. | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
y : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
idctn : Inverse multidimensional DCT | |
Notes | |
----- | |
For full details of the DCT types and normalization modes, as well as | |
references, see `dct`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import dctn, idctn | |
>>> rng = np.random.default_rng() | |
>>> y = rng.standard_normal((16, 16)) | |
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho')) | |
True | |
""" | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x) | |
def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False): | |
""" | |
Return multidimensional Discrete Cosine Transform along the specified axes. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DCT (see Notes). Default type is 2. | |
shape : int or array_like of ints or None, optional | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros. | |
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to | |
length ``shape[i]``. | |
If any element of `shape` is -1, the size of the corresponding | |
dimension of `x` is used. | |
axes : int or array_like of ints or None, optional | |
Axes along which the IDCT is computed. | |
The default is over all axes. | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
y : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
dctn : multidimensional DCT | |
Notes | |
----- | |
For full details of the IDCT types and normalization modes, as well as | |
references, see `idct`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import dctn, idctn | |
>>> rng = np.random.default_rng() | |
>>> y = rng.standard_normal((16, 16)) | |
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho')) | |
True | |
""" | |
type = _inverse_typemap[type] | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x) | |
def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False): | |
""" | |
Return multidimensional Discrete Sine Transform along the specified axes. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DST (see Notes). Default type is 2. | |
shape : int or array_like of ints or None, optional | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros. | |
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to | |
length ``shape[i]``. | |
If any element of `shape` is -1, the size of the corresponding | |
dimension of `x` is used. | |
axes : int or array_like of ints or None, optional | |
Axes along which the DCT is computed. | |
The default is over all axes. | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
y : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
idstn : Inverse multidimensional DST | |
Notes | |
----- | |
For full details of the DST types and normalization modes, as well as | |
references, see `dst`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import dstn, idstn | |
>>> rng = np.random.default_rng() | |
>>> y = rng.standard_normal((16, 16)) | |
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho')) | |
True | |
""" | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x) | |
def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False): | |
""" | |
Return multidimensional Discrete Sine Transform along the specified axes. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DST (see Notes). Default type is 2. | |
shape : int or array_like of ints or None, optional | |
The shape of the result. If both `shape` and `axes` (see below) are | |
None, `shape` is ``x.shape``; if `shape` is None but `axes` is | |
not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``. | |
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros. | |
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to | |
length ``shape[i]``. | |
If any element of `shape` is -1, the size of the corresponding | |
dimension of `x` is used. | |
axes : int or array_like of ints or None, optional | |
Axes along which the IDST is computed. | |
The default is over all axes. | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
y : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
dstn : multidimensional DST | |
Notes | |
----- | |
For full details of the IDST types and normalization modes, as well as | |
references, see `idst`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.fftpack import dstn, idstn | |
>>> rng = np.random.default_rng() | |
>>> y = rng.standard_normal((16, 16)) | |
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho')) | |
True | |
""" | |
type = _inverse_typemap[type] | |
shape = _good_shape(x, shape, axes) | |
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x) | |
def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False): | |
r""" | |
Return the Discrete Cosine Transform of arbitrary type sequence x. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DCT (see Notes). Default type is 2. | |
n : int, optional | |
Length of the transform. If ``n < x.shape[axis]``, `x` is | |
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The | |
default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the dct is computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
y : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
idct : Inverse DCT | |
Notes | |
----- | |
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to | |
MATLAB ``dct(x)``. | |
There are, theoretically, 8 types of the DCT, only the first 4 types are | |
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the' | |
Inverse DCT generally refers to DCT type 3. | |
**Type I** | |
There are several definitions of the DCT-I; we use the following | |
(for ``norm=None``) | |
.. math:: | |
y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left( | |
\frac{\pi k n}{N-1} \right) | |
If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling | |
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor | |
``f`` | |
.. math:: | |
f = \begin{cases} | |
\frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\ | |
\frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases} | |
.. versionadded:: 1.2.0 | |
Orthonormalization in DCT-I. | |
.. note:: | |
The DCT-I is only supported for input size > 1. | |
**Type II** | |
There are several definitions of the DCT-II; we use the following | |
(for ``norm=None``) | |
.. math:: | |
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right) | |
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f`` | |
.. math:: | |
f = \begin{cases} | |
\sqrt{\frac{1}{4N}} & \text{if }k=0, \\ | |
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases} | |
which makes the corresponding matrix of coefficients orthonormal | |
(``O @ O.T = np.eye(N)``). | |
**Type III** | |
There are several definitions, we use the following (for ``norm=None``) | |
.. math:: | |
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right) | |
or, for ``norm='ortho'`` | |
.. math:: | |
y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n | |
\cos\left(\frac{\pi(2k+1)n}{2N}\right) | |
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up | |
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of | |
the orthonormalized DCT-II. | |
**Type IV** | |
There are several definitions of the DCT-IV; we use the following | |
(for ``norm=None``) | |
.. math:: | |
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right) | |
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f`` | |
.. math:: | |
f = \frac{1}{\sqrt{2N}} | |
.. versionadded:: 1.2.0 | |
Support for DCT-IV. | |
References | |
---------- | |
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J. | |
Makhoul, `IEEE Transactions on acoustics, speech and signal | |
processing` vol. 28(1), pp. 27-34, | |
:doi:`10.1109/TASSP.1980.1163351` (1980). | |
.. [2] Wikipedia, "Discrete cosine transform", | |
https://en.wikipedia.org/wiki/Discrete_cosine_transform | |
Examples | |
-------- | |
The Type 1 DCT is equivalent to the FFT (though faster) for real, | |
even-symmetrical inputs. The output is also real and even-symmetrical. | |
Half of the FFT input is used to generate half of the FFT output: | |
>>> from scipy.fftpack import fft, dct | |
>>> import numpy as np | |
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real | |
array([ 30., -8., 6., -2., 6., -8.]) | |
>>> dct(np.array([4., 3., 5., 10.]), 1) | |
array([ 30., -8., 6., -2.]) | |
""" | |
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x) | |
def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False): | |
""" | |
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DCT (see Notes). Default type is 2. | |
n : int, optional | |
Length of the transform. If ``n < x.shape[axis]``, `x` is | |
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The | |
default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the idct is computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
idct : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
dct : Forward DCT | |
Notes | |
----- | |
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to | |
MATLAB ``idct(x)``. | |
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3. | |
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type | |
3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT | |
of type 4. For the definition of these types, see `dct`. | |
Examples | |
-------- | |
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical | |
inputs. The output is also real and even-symmetrical. Half of the IFFT | |
input is used to generate half of the IFFT output: | |
>>> from scipy.fftpack import ifft, idct | |
>>> import numpy as np | |
>>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real | |
array([ 4., 3., 5., 10., 5., 3.]) | |
>>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6 | |
array([ 4., 3., 5., 10.]) | |
""" | |
type = _inverse_typemap[type] | |
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x) | |
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False): | |
r""" | |
Return the Discrete Sine Transform of arbitrary type sequence x. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DST (see Notes). Default type is 2. | |
n : int, optional | |
Length of the transform. If ``n < x.shape[axis]``, `x` is | |
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The | |
default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the dst is computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
dst : ndarray of reals | |
The transformed input array. | |
See Also | |
-------- | |
idst : Inverse DST | |
Notes | |
----- | |
For a single dimension array ``x``. | |
There are, theoretically, 8 types of the DST for different combinations of | |
even/odd boundary conditions and boundary off sets [1]_, only the first | |
4 types are implemented in scipy. | |
**Type I** | |
There are several definitions of the DST-I; we use the following | |
for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`. | |
.. math:: | |
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right) | |
Note that the DST-I is only supported for input size > 1. | |
The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`. | |
The orthonormalized DST-I is exactly its own inverse. | |
**Type II** | |
There are several definitions of the DST-II; we use the following for | |
``norm=None``. DST-II assumes the input is odd around `n=-1/2` and | |
`n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1` | |
.. math:: | |
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right) | |
if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f`` | |
.. math:: | |
f = \begin{cases} | |
\sqrt{\frac{1}{4N}} & \text{if }k = 0, \\ | |
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases} | |
**Type III** | |
There are several definitions of the DST-III, we use the following (for | |
``norm=None``). DST-III assumes the input is odd around `n=-1` and even | |
around `n=N-1` | |
.. math:: | |
y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left( | |
\frac{\pi(2k+1)(n+1)}{2N}\right) | |
The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up | |
to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the | |
orthonormalized DST-II. | |
.. versionadded:: 0.11.0 | |
**Type IV** | |
There are several definitions of the DST-IV, we use the following (for | |
``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even | |
around `n=N-0.5` | |
.. math:: | |
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right) | |
The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The | |
orthonormalized DST-IV is exactly its own inverse. | |
.. versionadded:: 1.2.0 | |
Support for DST-IV. | |
References | |
---------- | |
.. [1] Wikipedia, "Discrete sine transform", | |
https://en.wikipedia.org/wiki/Discrete_sine_transform | |
""" | |
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x) | |
def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False): | |
""" | |
Return the Inverse Discrete Sine Transform of an arbitrary type sequence. | |
Parameters | |
---------- | |
x : array_like | |
The input array. | |
type : {1, 2, 3, 4}, optional | |
Type of the DST (see Notes). Default type is 2. | |
n : int, optional | |
Length of the transform. If ``n < x.shape[axis]``, `x` is | |
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The | |
default results in ``n = x.shape[axis]``. | |
axis : int, optional | |
Axis along which the idst is computed; the default is over the | |
last axis (i.e., ``axis=-1``). | |
norm : {None, 'ortho'}, optional | |
Normalization mode (see Notes). Default is None. | |
overwrite_x : bool, optional | |
If True, the contents of `x` can be destroyed; the default is False. | |
Returns | |
------- | |
idst : ndarray of real | |
The transformed input array. | |
See Also | |
-------- | |
dst : Forward DST | |
Notes | |
----- | |
'The' IDST is the IDST of type 2, which is the same as DST of type 3. | |
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type | |
3, and IDST of type 3 is the DST of type 2. For the definition of these | |
types, see `dst`. | |
.. versionadded:: 0.11.0 | |
""" | |
type = _inverse_typemap[type] | |
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x) | |