peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/integrate
/_ivp
/bdf.py
import numpy as np | |
from scipy.linalg import lu_factor, lu_solve | |
from scipy.sparse import issparse, csc_matrix, eye | |
from scipy.sparse.linalg import splu | |
from scipy.optimize._numdiff import group_columns | |
from .common import (validate_max_step, validate_tol, select_initial_step, | |
norm, EPS, num_jac, validate_first_step, | |
warn_extraneous) | |
from .base import OdeSolver, DenseOutput | |
MAX_ORDER = 5 | |
NEWTON_MAXITER = 4 | |
MIN_FACTOR = 0.2 | |
MAX_FACTOR = 10 | |
def compute_R(order, factor): | |
"""Compute the matrix for changing the differences array.""" | |
I = np.arange(1, order + 1)[:, None] | |
J = np.arange(1, order + 1) | |
M = np.zeros((order + 1, order + 1)) | |
M[1:, 1:] = (I - 1 - factor * J) / I | |
M[0] = 1 | |
return np.cumprod(M, axis=0) | |
def change_D(D, order, factor): | |
"""Change differences array in-place when step size is changed.""" | |
R = compute_R(order, factor) | |
U = compute_R(order, 1) | |
RU = R.dot(U) | |
D[:order + 1] = np.dot(RU.T, D[:order + 1]) | |
def solve_bdf_system(fun, t_new, y_predict, c, psi, LU, solve_lu, scale, tol): | |
"""Solve the algebraic system resulting from BDF method.""" | |
d = 0 | |
y = y_predict.copy() | |
dy_norm_old = None | |
converged = False | |
for k in range(NEWTON_MAXITER): | |
f = fun(t_new, y) | |
if not np.all(np.isfinite(f)): | |
break | |
dy = solve_lu(LU, c * f - psi - d) | |
dy_norm = norm(dy / scale) | |
if dy_norm_old is None: | |
rate = None | |
else: | |
rate = dy_norm / dy_norm_old | |
if (rate is not None and (rate >= 1 or | |
rate ** (NEWTON_MAXITER - k) / (1 - rate) * dy_norm > tol)): | |
break | |
y += dy | |
d += dy | |
if (dy_norm == 0 or | |
rate is not None and rate / (1 - rate) * dy_norm < tol): | |
converged = True | |
break | |
dy_norm_old = dy_norm | |
return converged, k + 1, y, d | |
class BDF(OdeSolver): | |
"""Implicit method based on backward-differentiation formulas. | |
This is a variable order method with the order varying automatically from | |
1 to 5. The general framework of the BDF algorithm is described in [1]_. | |
This class implements a quasi-constant step size as explained in [2]_. | |
The error estimation strategy for the constant-step BDF is derived in [3]_. | |
An accuracy enhancement using modified formulas (NDF) [2]_ is also implemented. | |
Can be applied in the complex domain. | |
Parameters | |
---------- | |
fun : callable | |
Right-hand side of the system: the time derivative of the state ``y`` | |
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a | |
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must | |
return an array of the same shape as ``y``. See `vectorized` for more | |
information. | |
t0 : float | |
Initial time. | |
y0 : array_like, shape (n,) | |
Initial state. | |
t_bound : float | |
Boundary time - the integration won't continue beyond it. It also | |
determines the direction of the integration. | |
first_step : float or None, optional | |
Initial step size. Default is ``None`` which means that the algorithm | |
should choose. | |
max_step : float, optional | |
Maximum allowed step size. Default is np.inf, i.e., the step size is not | |
bounded and determined solely by the solver. | |
rtol, atol : float and array_like, optional | |
Relative and absolute tolerances. The solver keeps the local error | |
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a | |
relative accuracy (number of correct digits), while `atol` controls | |
absolute accuracy (number of correct decimal places). To achieve the | |
desired `rtol`, set `atol` to be smaller than the smallest value that | |
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the | |
allowable error. If `atol` is larger than ``rtol * abs(y)`` the | |
number of correct digits is not guaranteed. Conversely, to achieve the | |
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller | |
than `atol`. If components of y have different scales, it might be | |
beneficial to set different `atol` values for different components by | |
passing array_like with shape (n,) for `atol`. Default values are | |
1e-3 for `rtol` and 1e-6 for `atol`. | |
jac : {None, array_like, sparse_matrix, callable}, optional | |
Jacobian matrix of the right-hand side of the system with respect to y, | |
required by this method. The Jacobian matrix has shape (n, n) and its | |
element (i, j) is equal to ``d f_i / d y_j``. | |
There are three ways to define the Jacobian: | |
* If array_like or sparse_matrix, the Jacobian is assumed to | |
be constant. | |
* If callable, the Jacobian is assumed to depend on both | |
t and y; it will be called as ``jac(t, y)`` as necessary. | |
For the 'Radau' and 'BDF' methods, the return value might be a | |
sparse matrix. | |
* If None (default), the Jacobian will be approximated by | |
finite differences. | |
It is generally recommended to provide the Jacobian rather than | |
relying on a finite-difference approximation. | |
jac_sparsity : {None, array_like, sparse matrix}, optional | |
Defines a sparsity structure of the Jacobian matrix for a | |
finite-difference approximation. Its shape must be (n, n). This argument | |
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero | |
elements in *each* row, providing the sparsity structure will greatly | |
speed up the computations [4]_. A zero entry means that a corresponding | |
element in the Jacobian is always zero. If None (default), the Jacobian | |
is assumed to be dense. | |
vectorized : bool, optional | |
Whether `fun` can be called in a vectorized fashion. Default is False. | |
If ``vectorized`` is False, `fun` will always be called with ``y`` of | |
shape ``(n,)``, where ``n = len(y0)``. | |
If ``vectorized`` is True, `fun` may be called with ``y`` of shape | |
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave | |
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of | |
the returned array is the time derivative of the state corresponding | |
with a column of ``y``). | |
Setting ``vectorized=True`` allows for faster finite difference | |
approximation of the Jacobian by this method, but may result in slower | |
execution overall in some circumstances (e.g. small ``len(y0)``). | |
Attributes | |
---------- | |
n : int | |
Number of equations. | |
status : string | |
Current status of the solver: 'running', 'finished' or 'failed'. | |
t_bound : float | |
Boundary time. | |
direction : float | |
Integration direction: +1 or -1. | |
t : float | |
Current time. | |
y : ndarray | |
Current state. | |
t_old : float | |
Previous time. None if no steps were made yet. | |
step_size : float | |
Size of the last successful step. None if no steps were made yet. | |
nfev : int | |
Number of evaluations of the right-hand side. | |
njev : int | |
Number of evaluations of the Jacobian. | |
nlu : int | |
Number of LU decompositions. | |
References | |
---------- | |
.. [1] G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical | |
Solution of Ordinary Differential Equations", ACM Transactions on | |
Mathematical Software, Vol. 1, No. 1, pp. 71-96, March 1975. | |
.. [2] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI. | |
COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997. | |
.. [3] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations I: | |
Nonstiff Problems", Sec. III.2. | |
.. [4] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of | |
sparse Jacobian matrices", Journal of the Institute of Mathematics | |
and its Applications, 13, pp. 117-120, 1974. | |
""" | |
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf, | |
rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None, | |
vectorized=False, first_step=None, **extraneous): | |
warn_extraneous(extraneous) | |
super().__init__(fun, t0, y0, t_bound, vectorized, | |
support_complex=True) | |
self.max_step = validate_max_step(max_step) | |
self.rtol, self.atol = validate_tol(rtol, atol, self.n) | |
f = self.fun(self.t, self.y) | |
if first_step is None: | |
self.h_abs = select_initial_step(self.fun, self.t, self.y, f, | |
self.direction, 1, | |
self.rtol, self.atol) | |
else: | |
self.h_abs = validate_first_step(first_step, t0, t_bound) | |
self.h_abs_old = None | |
self.error_norm_old = None | |
self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5)) | |
self.jac_factor = None | |
self.jac, self.J = self._validate_jac(jac, jac_sparsity) | |
if issparse(self.J): | |
def lu(A): | |
self.nlu += 1 | |
return splu(A) | |
def solve_lu(LU, b): | |
return LU.solve(b) | |
I = eye(self.n, format='csc', dtype=self.y.dtype) | |
else: | |
def lu(A): | |
self.nlu += 1 | |
return lu_factor(A, overwrite_a=True) | |
def solve_lu(LU, b): | |
return lu_solve(LU, b, overwrite_b=True) | |
I = np.identity(self.n, dtype=self.y.dtype) | |
self.lu = lu | |
self.solve_lu = solve_lu | |
self.I = I | |
kappa = np.array([0, -0.1850, -1/9, -0.0823, -0.0415, 0]) | |
self.gamma = np.hstack((0, np.cumsum(1 / np.arange(1, MAX_ORDER + 1)))) | |
self.alpha = (1 - kappa) * self.gamma | |
self.error_const = kappa * self.gamma + 1 / np.arange(1, MAX_ORDER + 2) | |
D = np.empty((MAX_ORDER + 3, self.n), dtype=self.y.dtype) | |
D[0] = self.y | |
D[1] = f * self.h_abs * self.direction | |
self.D = D | |
self.order = 1 | |
self.n_equal_steps = 0 | |
self.LU = None | |
def _validate_jac(self, jac, sparsity): | |
t0 = self.t | |
y0 = self.y | |
if jac is None: | |
if sparsity is not None: | |
if issparse(sparsity): | |
sparsity = csc_matrix(sparsity) | |
groups = group_columns(sparsity) | |
sparsity = (sparsity, groups) | |
def jac_wrapped(t, y): | |
self.njev += 1 | |
f = self.fun_single(t, y) | |
J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f, | |
self.atol, self.jac_factor, | |
sparsity) | |
return J | |
J = jac_wrapped(t0, y0) | |
elif callable(jac): | |
J = jac(t0, y0) | |
self.njev += 1 | |
if issparse(J): | |
J = csc_matrix(J, dtype=y0.dtype) | |
def jac_wrapped(t, y): | |
self.njev += 1 | |
return csc_matrix(jac(t, y), dtype=y0.dtype) | |
else: | |
J = np.asarray(J, dtype=y0.dtype) | |
def jac_wrapped(t, y): | |
self.njev += 1 | |
return np.asarray(jac(t, y), dtype=y0.dtype) | |
if J.shape != (self.n, self.n): | |
raise ValueError("`jac` is expected to have shape {}, but " | |
"actually has {}." | |
.format((self.n, self.n), J.shape)) | |
else: | |
if issparse(jac): | |
J = csc_matrix(jac, dtype=y0.dtype) | |
else: | |
J = np.asarray(jac, dtype=y0.dtype) | |
if J.shape != (self.n, self.n): | |
raise ValueError("`jac` is expected to have shape {}, but " | |
"actually has {}." | |
.format((self.n, self.n), J.shape)) | |
jac_wrapped = None | |
return jac_wrapped, J | |
def _step_impl(self): | |
t = self.t | |
D = self.D | |
max_step = self.max_step | |
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t) | |
if self.h_abs > max_step: | |
h_abs = max_step | |
change_D(D, self.order, max_step / self.h_abs) | |
self.n_equal_steps = 0 | |
elif self.h_abs < min_step: | |
h_abs = min_step | |
change_D(D, self.order, min_step / self.h_abs) | |
self.n_equal_steps = 0 | |
else: | |
h_abs = self.h_abs | |
atol = self.atol | |
rtol = self.rtol | |
order = self.order | |
alpha = self.alpha | |
gamma = self.gamma | |
error_const = self.error_const | |
J = self.J | |
LU = self.LU | |
current_jac = self.jac is None | |
step_accepted = False | |
while not step_accepted: | |
if h_abs < min_step: | |
return False, self.TOO_SMALL_STEP | |
h = h_abs * self.direction | |
t_new = t + h | |
if self.direction * (t_new - self.t_bound) > 0: | |
t_new = self.t_bound | |
change_D(D, order, np.abs(t_new - t) / h_abs) | |
self.n_equal_steps = 0 | |
LU = None | |
h = t_new - t | |
h_abs = np.abs(h) | |
y_predict = np.sum(D[:order + 1], axis=0) | |
scale = atol + rtol * np.abs(y_predict) | |
psi = np.dot(D[1: order + 1].T, gamma[1: order + 1]) / alpha[order] | |
converged = False | |
c = h / alpha[order] | |
while not converged: | |
if LU is None: | |
LU = self.lu(self.I - c * J) | |
converged, n_iter, y_new, d = solve_bdf_system( | |
self.fun, t_new, y_predict, c, psi, LU, self.solve_lu, | |
scale, self.newton_tol) | |
if not converged: | |
if current_jac: | |
break | |
J = self.jac(t_new, y_predict) | |
LU = None | |
current_jac = True | |
if not converged: | |
factor = 0.5 | |
h_abs *= factor | |
change_D(D, order, factor) | |
self.n_equal_steps = 0 | |
LU = None | |
continue | |
safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER | |
+ n_iter) | |
scale = atol + rtol * np.abs(y_new) | |
error = error_const[order] * d | |
error_norm = norm(error / scale) | |
if error_norm > 1: | |
factor = max(MIN_FACTOR, | |
safety * error_norm ** (-1 / (order + 1))) | |
h_abs *= factor | |
change_D(D, order, factor) | |
self.n_equal_steps = 0 | |
# As we didn't have problems with convergence, we don't | |
# reset LU here. | |
else: | |
step_accepted = True | |
self.n_equal_steps += 1 | |
self.t = t_new | |
self.y = y_new | |
self.h_abs = h_abs | |
self.J = J | |
self.LU = LU | |
# Update differences. The principal relation here is | |
# D^{j + 1} y_n = D^{j} y_n - D^{j} y_{n - 1}. Keep in mind that D | |
# contained difference for previous interpolating polynomial and | |
# d = D^{k + 1} y_n. Thus this elegant code follows. | |
D[order + 2] = d - D[order + 1] | |
D[order + 1] = d | |
for i in reversed(range(order + 1)): | |
D[i] += D[i + 1] | |
if self.n_equal_steps < order + 1: | |
return True, None | |
if order > 1: | |
error_m = error_const[order - 1] * D[order] | |
error_m_norm = norm(error_m / scale) | |
else: | |
error_m_norm = np.inf | |
if order < MAX_ORDER: | |
error_p = error_const[order + 1] * D[order + 2] | |
error_p_norm = norm(error_p / scale) | |
else: | |
error_p_norm = np.inf | |
error_norms = np.array([error_m_norm, error_norm, error_p_norm]) | |
with np.errstate(divide='ignore'): | |
factors = error_norms ** (-1 / np.arange(order, order + 3)) | |
delta_order = np.argmax(factors) - 1 | |
order += delta_order | |
self.order = order | |
factor = min(MAX_FACTOR, safety * np.max(factors)) | |
self.h_abs *= factor | |
change_D(D, order, factor) | |
self.n_equal_steps = 0 | |
self.LU = None | |
return True, None | |
def _dense_output_impl(self): | |
return BdfDenseOutput(self.t_old, self.t, self.h_abs * self.direction, | |
self.order, self.D[:self.order + 1].copy()) | |
class BdfDenseOutput(DenseOutput): | |
def __init__(self, t_old, t, h, order, D): | |
super().__init__(t_old, t) | |
self.order = order | |
self.t_shift = self.t - h * np.arange(self.order) | |
self.denom = h * (1 + np.arange(self.order)) | |
self.D = D | |
def _call_impl(self, t): | |
if t.ndim == 0: | |
x = (t - self.t_shift) / self.denom | |
p = np.cumprod(x) | |
else: | |
x = (t - self.t_shift[:, None]) / self.denom[:, None] | |
p = np.cumprod(x, axis=0) | |
y = np.dot(self.D[1:].T, p) | |
if y.ndim == 1: | |
y += self.D[0] | |
else: | |
y += self.D[0, :, None] | |
return y | |