peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/io
/matlab
/_mio5.py
''' Classes for read / write of matlab (TM) 5 files | |
The matfile specification last found here: | |
https://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf | |
(as of December 5 2008) | |
================================= | |
Note on functions and mat files | |
================================= | |
The document above does not give any hints as to the storage of matlab | |
function handles, or anonymous function handles. I had, therefore, to | |
guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and | |
``mxOPAQUE_CLASS`` by looking at example mat files. | |
``mxFUNCTION_CLASS`` stores all types of matlab functions. It seems to | |
contain a struct matrix with a set pattern of fields. For anonymous | |
functions, a sub-fields of one of these fields seems to contain the | |
well-named ``mxOPAQUE_CLASS``. This seems to contain: | |
* array flags as for any matlab matrix | |
* 3 int8 strings | |
* a matrix | |
It seems that whenever the mat file contains a ``mxOPAQUE_CLASS`` | |
instance, there is also an un-named matrix (name == '') at the end of | |
the mat file. I'll call this the ``__function_workspace__`` matrix. | |
When I saved two anonymous functions in a mat file, or appended another | |
anonymous function to the mat file, there was still only one | |
``__function_workspace__`` un-named matrix at the end, but larger than | |
that for a mat file with a single anonymous function, suggesting that | |
the workspaces for the two functions had been merged. | |
The ``__function_workspace__`` matrix appears to be of double class | |
(``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in | |
the format of a mini .mat file, without the first 124 bytes of the file | |
header (the description and the subsystem_offset), but with the version | |
U2 bytes, and the S2 endian test bytes. There follow 4 zero bytes, | |
presumably for 8 byte padding, and then a series of ``miMATRIX`` | |
entries, as in a standard mat file. The ``miMATRIX`` entries appear to | |
be series of un-named (name == '') matrices, and may also contain arrays | |
of this same mini-mat format. | |
I guess that: | |
* saving an anonymous function back to a mat file will need the | |
associated ``__function_workspace__`` matrix saved as well for the | |
anonymous function to work correctly. | |
* appending to a mat file that has a ``__function_workspace__`` would | |
involve first pulling off this workspace, appending, checking whether | |
there were any more anonymous functions appended, and then somehow | |
merging the relevant workspaces, and saving at the end of the mat | |
file. | |
The mat files I was playing with are in ``tests/data``: | |
* sqr.mat | |
* parabola.mat | |
* some_functions.mat | |
See ``tests/test_mio.py:test_mio_funcs.py`` for the debugging | |
script I was working with. | |
Small fragments of current code adapted from matfile.py by Heiko | |
Henkelmann; parts of the code for simplify_cells=True adapted from | |
http://blog.nephics.com/2019/08/28/better-loadmat-for-scipy/. | |
''' | |
import os | |
import time | |
import sys | |
import zlib | |
from io import BytesIO | |
import warnings | |
import numpy as np | |
import scipy.sparse | |
from ._byteordercodes import native_code, swapped_code | |
from ._miobase import (MatFileReader, docfiller, matdims, read_dtype, | |
arr_to_chars, arr_dtype_number, MatWriteError, | |
MatReadError, MatReadWarning) | |
# Reader object for matlab 5 format variables | |
from ._mio5_utils import VarReader5 | |
# Constants and helper objects | |
from ._mio5_params import (MatlabObject, MatlabFunction, MDTYPES, NP_TO_MTYPES, | |
NP_TO_MXTYPES, miCOMPRESSED, miMATRIX, miINT8, | |
miUTF8, miUINT32, mxCELL_CLASS, mxSTRUCT_CLASS, | |
mxOBJECT_CLASS, mxCHAR_CLASS, mxSPARSE_CLASS, | |
mxDOUBLE_CLASS, mclass_info, mat_struct) | |
from ._streams import ZlibInputStream | |
def _has_struct(elem): | |
"""Determine if elem is an array and if first array item is a struct.""" | |
return (isinstance(elem, np.ndarray) and (elem.size > 0) and (elem.ndim > 0) and | |
isinstance(elem[0], mat_struct)) | |
def _inspect_cell_array(ndarray): | |
"""Construct lists from cell arrays (loaded as numpy ndarrays), recursing | |
into items if they contain mat_struct objects.""" | |
elem_list = [] | |
for sub_elem in ndarray: | |
if isinstance(sub_elem, mat_struct): | |
elem_list.append(_matstruct_to_dict(sub_elem)) | |
elif _has_struct(sub_elem): | |
elem_list.append(_inspect_cell_array(sub_elem)) | |
else: | |
elem_list.append(sub_elem) | |
return elem_list | |
def _matstruct_to_dict(matobj): | |
"""Construct nested dicts from mat_struct objects.""" | |
d = {} | |
for f in matobj._fieldnames: | |
elem = matobj.__dict__[f] | |
if isinstance(elem, mat_struct): | |
d[f] = _matstruct_to_dict(elem) | |
elif _has_struct(elem): | |
d[f] = _inspect_cell_array(elem) | |
else: | |
d[f] = elem | |
return d | |
def _simplify_cells(d): | |
"""Convert mat objects in dict to nested dicts.""" | |
for key in d: | |
if isinstance(d[key], mat_struct): | |
d[key] = _matstruct_to_dict(d[key]) | |
elif _has_struct(d[key]): | |
d[key] = _inspect_cell_array(d[key]) | |
return d | |
class MatFile5Reader(MatFileReader): | |
''' Reader for Mat 5 mat files | |
Adds the following attribute to base class | |
uint16_codec - char codec to use for uint16 char arrays | |
(defaults to system default codec) | |
Uses variable reader that has the following standard interface (see | |
abstract class in ``miobase``:: | |
__init__(self, file_reader) | |
read_header(self) | |
array_from_header(self) | |
and added interface:: | |
set_stream(self, stream) | |
read_full_tag(self) | |
''' | |
def __init__(self, | |
mat_stream, | |
byte_order=None, | |
mat_dtype=False, | |
squeeze_me=False, | |
chars_as_strings=True, | |
matlab_compatible=False, | |
struct_as_record=True, | |
verify_compressed_data_integrity=True, | |
uint16_codec=None, | |
simplify_cells=False): | |
'''Initializer for matlab 5 file format reader | |
%(matstream_arg)s | |
%(load_args)s | |
%(struct_arg)s | |
uint16_codec : {None, string} | |
Set codec to use for uint16 char arrays (e.g., 'utf-8'). | |
Use system default codec if None | |
''' | |
super().__init__( | |
mat_stream, | |
byte_order, | |
mat_dtype, | |
squeeze_me, | |
chars_as_strings, | |
matlab_compatible, | |
struct_as_record, | |
verify_compressed_data_integrity, | |
simplify_cells) | |
# Set uint16 codec | |
if not uint16_codec: | |
uint16_codec = sys.getdefaultencoding() | |
self.uint16_codec = uint16_codec | |
# placeholders for readers - see initialize_read method | |
self._file_reader = None | |
self._matrix_reader = None | |
def guess_byte_order(self): | |
''' Guess byte order. | |
Sets stream pointer to 0''' | |
self.mat_stream.seek(126) | |
mi = self.mat_stream.read(2) | |
self.mat_stream.seek(0) | |
return mi == b'IM' and '<' or '>' | |
def read_file_header(self): | |
''' Read in mat 5 file header ''' | |
hdict = {} | |
hdr_dtype = MDTYPES[self.byte_order]['dtypes']['file_header'] | |
hdr = read_dtype(self.mat_stream, hdr_dtype) | |
hdict['__header__'] = hdr['description'].item().strip(b' \t\n\000') | |
v_major = hdr['version'] >> 8 | |
v_minor = hdr['version'] & 0xFF | |
hdict['__version__'] = '%d.%d' % (v_major, v_minor) | |
return hdict | |
def initialize_read(self): | |
''' Run when beginning read of variables | |
Sets up readers from parameters in `self` | |
''' | |
# reader for top level stream. We need this extra top-level | |
# reader because we use the matrix_reader object to contain | |
# compressed matrices (so they have their own stream) | |
self._file_reader = VarReader5(self) | |
# reader for matrix streams | |
self._matrix_reader = VarReader5(self) | |
def read_var_header(self): | |
''' Read header, return header, next position | |
Header has to define at least .name and .is_global | |
Parameters | |
---------- | |
None | |
Returns | |
------- | |
header : object | |
object that can be passed to self.read_var_array, and that | |
has attributes .name and .is_global | |
next_position : int | |
position in stream of next variable | |
''' | |
mdtype, byte_count = self._file_reader.read_full_tag() | |
if not byte_count > 0: | |
raise ValueError("Did not read any bytes") | |
next_pos = self.mat_stream.tell() + byte_count | |
if mdtype == miCOMPRESSED: | |
# Make new stream from compressed data | |
stream = ZlibInputStream(self.mat_stream, byte_count) | |
self._matrix_reader.set_stream(stream) | |
check_stream_limit = self.verify_compressed_data_integrity | |
mdtype, byte_count = self._matrix_reader.read_full_tag() | |
else: | |
check_stream_limit = False | |
self._matrix_reader.set_stream(self.mat_stream) | |
if not mdtype == miMATRIX: | |
raise TypeError('Expecting miMATRIX type here, got %d' % mdtype) | |
header = self._matrix_reader.read_header(check_stream_limit) | |
return header, next_pos | |
def read_var_array(self, header, process=True): | |
''' Read array, given `header` | |
Parameters | |
---------- | |
header : header object | |
object with fields defining variable header | |
process : {True, False} bool, optional | |
If True, apply recursive post-processing during loading of | |
array. | |
Returns | |
------- | |
arr : array | |
array with post-processing applied or not according to | |
`process`. | |
''' | |
return self._matrix_reader.array_from_header(header, process) | |
def get_variables(self, variable_names=None): | |
''' get variables from stream as dictionary | |
variable_names - optional list of variable names to get | |
If variable_names is None, then get all variables in file | |
''' | |
if isinstance(variable_names, str): | |
variable_names = [variable_names] | |
elif variable_names is not None: | |
variable_names = list(variable_names) | |
self.mat_stream.seek(0) | |
# Here we pass all the parameters in self to the reading objects | |
self.initialize_read() | |
mdict = self.read_file_header() | |
mdict['__globals__'] = [] | |
while not self.end_of_stream(): | |
hdr, next_position = self.read_var_header() | |
name = 'None' if hdr.name is None else hdr.name.decode('latin1') | |
if name in mdict: | |
warnings.warn('Duplicate variable name "%s" in stream' | |
' - replacing previous with new\n' | |
'Consider mio5.varmats_from_mat to split ' | |
'file into single variable files' % name, | |
MatReadWarning, stacklevel=2) | |
if name == '': | |
# can only be a matlab 7 function workspace | |
name = '__function_workspace__' | |
# We want to keep this raw because mat_dtype processing | |
# will break the format (uint8 as mxDOUBLE_CLASS) | |
process = False | |
else: | |
process = True | |
if variable_names is not None and name not in variable_names: | |
self.mat_stream.seek(next_position) | |
continue | |
try: | |
res = self.read_var_array(hdr, process) | |
except MatReadError as err: | |
warnings.warn( | |
f'Unreadable variable "{name}", because "{err}"', | |
Warning, stacklevel=2) | |
res = "Read error: %s" % err | |
self.mat_stream.seek(next_position) | |
mdict[name] = res | |
if hdr.is_global: | |
mdict['__globals__'].append(name) | |
if variable_names is not None: | |
variable_names.remove(name) | |
if len(variable_names) == 0: | |
break | |
if self.simplify_cells: | |
return _simplify_cells(mdict) | |
else: | |
return mdict | |
def list_variables(self): | |
''' list variables from stream ''' | |
self.mat_stream.seek(0) | |
# Here we pass all the parameters in self to the reading objects | |
self.initialize_read() | |
self.read_file_header() | |
vars = [] | |
while not self.end_of_stream(): | |
hdr, next_position = self.read_var_header() | |
name = 'None' if hdr.name is None else hdr.name.decode('latin1') | |
if name == '': | |
# can only be a matlab 7 function workspace | |
name = '__function_workspace__' | |
shape = self._matrix_reader.shape_from_header(hdr) | |
if hdr.is_logical: | |
info = 'logical' | |
else: | |
info = mclass_info.get(hdr.mclass, 'unknown') | |
vars.append((name, shape, info)) | |
self.mat_stream.seek(next_position) | |
return vars | |
def varmats_from_mat(file_obj): | |
""" Pull variables out of mat 5 file as a sequence of mat file objects | |
This can be useful with a difficult mat file, containing unreadable | |
variables. This routine pulls the variables out in raw form and puts them, | |
unread, back into a file stream for saving or reading. Another use is the | |
pathological case where there is more than one variable of the same name in | |
the file; this routine returns the duplicates, whereas the standard reader | |
will overwrite duplicates in the returned dictionary. | |
The file pointer in `file_obj` will be undefined. File pointers for the | |
returned file-like objects are set at 0. | |
Parameters | |
---------- | |
file_obj : file-like | |
file object containing mat file | |
Returns | |
------- | |
named_mats : list | |
list contains tuples of (name, BytesIO) where BytesIO is a file-like | |
object containing mat file contents as for a single variable. The | |
BytesIO contains a string with the original header and a single var. If | |
``var_file_obj`` is an individual BytesIO instance, then save as a mat | |
file with something like ``open('test.mat', | |
'wb').write(var_file_obj.read())`` | |
Examples | |
-------- | |
>>> import scipy.io | |
>>> import numpy as np | |
>>> from io import BytesIO | |
>>> from scipy.io.matlab._mio5 import varmats_from_mat | |
>>> mat_fileobj = BytesIO() | |
>>> scipy.io.savemat(mat_fileobj, {'b': np.arange(10), 'a': 'a string'}) | |
>>> varmats = varmats_from_mat(mat_fileobj) | |
>>> sorted([name for name, str_obj in varmats]) | |
['a', 'b'] | |
""" | |
rdr = MatFile5Reader(file_obj) | |
file_obj.seek(0) | |
# Raw read of top-level file header | |
hdr_len = MDTYPES[native_code]['dtypes']['file_header'].itemsize | |
raw_hdr = file_obj.read(hdr_len) | |
# Initialize variable reading | |
file_obj.seek(0) | |
rdr.initialize_read() | |
rdr.read_file_header() | |
next_position = file_obj.tell() | |
named_mats = [] | |
while not rdr.end_of_stream(): | |
start_position = next_position | |
hdr, next_position = rdr.read_var_header() | |
name = 'None' if hdr.name is None else hdr.name.decode('latin1') | |
# Read raw variable string | |
file_obj.seek(start_position) | |
byte_count = next_position - start_position | |
var_str = file_obj.read(byte_count) | |
# write to stringio object | |
out_obj = BytesIO() | |
out_obj.write(raw_hdr) | |
out_obj.write(var_str) | |
out_obj.seek(0) | |
named_mats.append((name, out_obj)) | |
return named_mats | |
class EmptyStructMarker: | |
""" Class to indicate presence of empty matlab struct on output """ | |
def to_writeable(source): | |
''' Convert input object ``source`` to something we can write | |
Parameters | |
---------- | |
source : object | |
Returns | |
------- | |
arr : None or ndarray or EmptyStructMarker | |
If `source` cannot be converted to something we can write to a matfile, | |
return None. If `source` is equivalent to an empty dictionary, return | |
``EmptyStructMarker``. Otherwise return `source` converted to an | |
ndarray with contents for writing to matfile. | |
''' | |
if isinstance(source, np.ndarray): | |
return source | |
if source is None: | |
return None | |
if hasattr(source, "__array__"): | |
return np.asarray(source) | |
# Objects that implement mappings | |
is_mapping = (hasattr(source, 'keys') and hasattr(source, 'values') and | |
hasattr(source, 'items')) | |
# Objects that don't implement mappings, but do have dicts | |
if isinstance(source, np.generic): | |
# NumPy scalars are never mappings (PyPy issue workaround) | |
pass | |
elif not is_mapping and hasattr(source, '__dict__'): | |
source = {key: value for key, value in source.__dict__.items() | |
if not key.startswith('_')} | |
is_mapping = True | |
if is_mapping: | |
dtype = [] | |
values = [] | |
for field, value in source.items(): | |
if (isinstance(field, str) and | |
field[0] not in '_0123456789'): | |
dtype.append((str(field), object)) | |
values.append(value) | |
if dtype: | |
return np.array([tuple(values)], dtype) | |
else: | |
return EmptyStructMarker | |
# Next try and convert to an array | |
try: | |
narr = np.asanyarray(source) | |
except ValueError: | |
narr = np.asanyarray(source, dtype=object) | |
if narr.dtype.type in (object, np.object_) and \ | |
narr.shape == () and narr == source: | |
# No interesting conversion possible | |
return None | |
return narr | |
# Native byte ordered dtypes for convenience for writers | |
NDT_FILE_HDR = MDTYPES[native_code]['dtypes']['file_header'] | |
NDT_TAG_FULL = MDTYPES[native_code]['dtypes']['tag_full'] | |
NDT_TAG_SMALL = MDTYPES[native_code]['dtypes']['tag_smalldata'] | |
NDT_ARRAY_FLAGS = MDTYPES[native_code]['dtypes']['array_flags'] | |
class VarWriter5: | |
''' Generic matlab matrix writing class ''' | |
mat_tag = np.zeros((), NDT_TAG_FULL) | |
mat_tag['mdtype'] = miMATRIX | |
def __init__(self, file_writer): | |
self.file_stream = file_writer.file_stream | |
self.unicode_strings = file_writer.unicode_strings | |
self.long_field_names = file_writer.long_field_names | |
self.oned_as = file_writer.oned_as | |
# These are used for top level writes, and unset after | |
self._var_name = None | |
self._var_is_global = False | |
def write_bytes(self, arr): | |
self.file_stream.write(arr.tobytes(order='F')) | |
def write_string(self, s): | |
self.file_stream.write(s) | |
def write_element(self, arr, mdtype=None): | |
''' write tag and data ''' | |
if mdtype is None: | |
mdtype = NP_TO_MTYPES[arr.dtype.str[1:]] | |
# Array needs to be in native byte order | |
if arr.dtype.byteorder == swapped_code: | |
arr = arr.byteswap().view(arr.dtype.newbyteorder()) | |
byte_count = arr.size*arr.itemsize | |
if byte_count <= 4: | |
self.write_smalldata_element(arr, mdtype, byte_count) | |
else: | |
self.write_regular_element(arr, mdtype, byte_count) | |
def write_smalldata_element(self, arr, mdtype, byte_count): | |
# write tag with embedded data | |
tag = np.zeros((), NDT_TAG_SMALL) | |
tag['byte_count_mdtype'] = (byte_count << 16) + mdtype | |
# if arr.tobytes is < 4, the element will be zero-padded as needed. | |
tag['data'] = arr.tobytes(order='F') | |
self.write_bytes(tag) | |
def write_regular_element(self, arr, mdtype, byte_count): | |
# write tag, data | |
tag = np.zeros((), NDT_TAG_FULL) | |
tag['mdtype'] = mdtype | |
tag['byte_count'] = byte_count | |
self.write_bytes(tag) | |
self.write_bytes(arr) | |
# pad to next 64-bit boundary | |
bc_mod_8 = byte_count % 8 | |
if bc_mod_8: | |
self.file_stream.write(b'\x00' * (8-bc_mod_8)) | |
def write_header(self, | |
shape, | |
mclass, | |
is_complex=False, | |
is_logical=False, | |
nzmax=0): | |
''' Write header for given data options | |
shape : sequence | |
array shape | |
mclass - mat5 matrix class | |
is_complex - True if matrix is complex | |
is_logical - True if matrix is logical | |
nzmax - max non zero elements for sparse arrays | |
We get the name and the global flag from the object, and reset | |
them to defaults after we've used them | |
''' | |
# get name and is_global from one-shot object store | |
name = self._var_name | |
is_global = self._var_is_global | |
# initialize the top-level matrix tag, store position | |
self._mat_tag_pos = self.file_stream.tell() | |
self.write_bytes(self.mat_tag) | |
# write array flags (complex, global, logical, class, nzmax) | |
af = np.zeros((), NDT_ARRAY_FLAGS) | |
af['data_type'] = miUINT32 | |
af['byte_count'] = 8 | |
flags = is_complex << 3 | is_global << 2 | is_logical << 1 | |
af['flags_class'] = mclass | flags << 8 | |
af['nzmax'] = nzmax | |
self.write_bytes(af) | |
# shape | |
self.write_element(np.array(shape, dtype='i4')) | |
# write name | |
name = np.asarray(name) | |
if name == '': # empty string zero-terminated | |
self.write_smalldata_element(name, miINT8, 0) | |
else: | |
self.write_element(name, miINT8) | |
# reset the one-shot store to defaults | |
self._var_name = '' | |
self._var_is_global = False | |
def update_matrix_tag(self, start_pos): | |
curr_pos = self.file_stream.tell() | |
self.file_stream.seek(start_pos) | |
byte_count = curr_pos - start_pos - 8 | |
if byte_count >= 2**32: | |
raise MatWriteError("Matrix too large to save with Matlab " | |
"5 format") | |
self.mat_tag['byte_count'] = byte_count | |
self.write_bytes(self.mat_tag) | |
self.file_stream.seek(curr_pos) | |
def write_top(self, arr, name, is_global): | |
""" Write variable at top level of mat file | |
Parameters | |
---------- | |
arr : array_like | |
array-like object to create writer for | |
name : str, optional | |
name as it will appear in matlab workspace | |
default is empty string | |
is_global : {False, True}, optional | |
whether variable will be global on load into matlab | |
""" | |
# these are set before the top-level header write, and unset at | |
# the end of the same write, because they do not apply for lower levels | |
self._var_is_global = is_global | |
self._var_name = name | |
# write the header and data | |
self.write(arr) | |
def write(self, arr): | |
''' Write `arr` to stream at top and sub levels | |
Parameters | |
---------- | |
arr : array_like | |
array-like object to create writer for | |
''' | |
# store position, so we can update the matrix tag | |
mat_tag_pos = self.file_stream.tell() | |
# First check if these are sparse | |
if scipy.sparse.issparse(arr): | |
self.write_sparse(arr) | |
self.update_matrix_tag(mat_tag_pos) | |
return | |
# Try to convert things that aren't arrays | |
narr = to_writeable(arr) | |
if narr is None: | |
raise TypeError(f'Could not convert {arr} (type {type(arr)}) to array') | |
if isinstance(narr, MatlabObject): | |
self.write_object(narr) | |
elif isinstance(narr, MatlabFunction): | |
raise MatWriteError('Cannot write matlab functions') | |
elif narr is EmptyStructMarker: # empty struct array | |
self.write_empty_struct() | |
elif narr.dtype.fields: # struct array | |
self.write_struct(narr) | |
elif narr.dtype.hasobject: # cell array | |
self.write_cells(narr) | |
elif narr.dtype.kind in ('U', 'S'): | |
if self.unicode_strings: | |
codec = 'UTF8' | |
else: | |
codec = 'ascii' | |
self.write_char(narr, codec) | |
else: | |
self.write_numeric(narr) | |
self.update_matrix_tag(mat_tag_pos) | |
def write_numeric(self, arr): | |
imagf = arr.dtype.kind == 'c' | |
logif = arr.dtype.kind == 'b' | |
try: | |
mclass = NP_TO_MXTYPES[arr.dtype.str[1:]] | |
except KeyError: | |
# No matching matlab type, probably complex256 / float128 / float96 | |
# Cast data to complex128 / float64. | |
if imagf: | |
arr = arr.astype('c128') | |
elif logif: | |
arr = arr.astype('i1') # Should only contain 0/1 | |
else: | |
arr = arr.astype('f8') | |
mclass = mxDOUBLE_CLASS | |
self.write_header(matdims(arr, self.oned_as), | |
mclass, | |
is_complex=imagf, | |
is_logical=logif) | |
if imagf: | |
self.write_element(arr.real) | |
self.write_element(arr.imag) | |
else: | |
self.write_element(arr) | |
def write_char(self, arr, codec='ascii'): | |
''' Write string array `arr` with given `codec` | |
''' | |
if arr.size == 0 or np.all(arr == ''): | |
# This an empty string array or a string array containing | |
# only empty strings. Matlab cannot distinguish between a | |
# string array that is empty, and a string array containing | |
# only empty strings, because it stores strings as arrays of | |
# char. There is no way of having an array of char that is | |
# not empty, but contains an empty string. We have to | |
# special-case the array-with-empty-strings because even | |
# empty strings have zero padding, which would otherwise | |
# appear in matlab as a string with a space. | |
shape = (0,) * np.max([arr.ndim, 2]) | |
self.write_header(shape, mxCHAR_CLASS) | |
self.write_smalldata_element(arr, miUTF8, 0) | |
return | |
# non-empty string. | |
# | |
# Convert to char array | |
arr = arr_to_chars(arr) | |
# We have to write the shape directly, because we are going | |
# recode the characters, and the resulting stream of chars | |
# may have a different length | |
shape = arr.shape | |
self.write_header(shape, mxCHAR_CLASS) | |
if arr.dtype.kind == 'U' and arr.size: | |
# Make one long string from all the characters. We need to | |
# transpose here, because we're flattening the array, before | |
# we write the bytes. The bytes have to be written in | |
# Fortran order. | |
n_chars = np.prod(shape) | |
st_arr = np.ndarray(shape=(), | |
dtype=arr_dtype_number(arr, n_chars), | |
buffer=arr.T.copy()) # Fortran order | |
# Recode with codec to give byte string | |
st = st_arr.item().encode(codec) | |
# Reconstruct as 1-D byte array | |
arr = np.ndarray(shape=(len(st),), | |
dtype='S1', | |
buffer=st) | |
self.write_element(arr, mdtype=miUTF8) | |
def write_sparse(self, arr): | |
''' Sparse matrices are 2D | |
''' | |
A = arr.tocsc() # convert to sparse CSC format | |
A.sort_indices() # MATLAB expects sorted row indices | |
is_complex = (A.dtype.kind == 'c') | |
is_logical = (A.dtype.kind == 'b') | |
nz = A.nnz | |
self.write_header(matdims(arr, self.oned_as), | |
mxSPARSE_CLASS, | |
is_complex=is_complex, | |
is_logical=is_logical, | |
# matlab won't load file with 0 nzmax | |
nzmax=1 if nz == 0 else nz) | |
self.write_element(A.indices.astype('i4')) | |
self.write_element(A.indptr.astype('i4')) | |
self.write_element(A.data.real) | |
if is_complex: | |
self.write_element(A.data.imag) | |
def write_cells(self, arr): | |
self.write_header(matdims(arr, self.oned_as), | |
mxCELL_CLASS) | |
# loop over data, column major | |
A = np.atleast_2d(arr).flatten('F') | |
for el in A: | |
self.write(el) | |
def write_empty_struct(self): | |
self.write_header((1, 1), mxSTRUCT_CLASS) | |
# max field name length set to 1 in an example matlab struct | |
self.write_element(np.array(1, dtype=np.int32)) | |
# Field names element is empty | |
self.write_element(np.array([], dtype=np.int8)) | |
def write_struct(self, arr): | |
self.write_header(matdims(arr, self.oned_as), | |
mxSTRUCT_CLASS) | |
self._write_items(arr) | |
def _write_items(self, arr): | |
# write fieldnames | |
fieldnames = [f[0] for f in arr.dtype.descr] | |
length = max([len(fieldname) for fieldname in fieldnames])+1 | |
max_length = (self.long_field_names and 64) or 32 | |
if length > max_length: | |
raise ValueError("Field names are restricted to %d characters" % | |
(max_length-1)) | |
self.write_element(np.array([length], dtype='i4')) | |
self.write_element( | |
np.array(fieldnames, dtype='S%d' % (length)), | |
mdtype=miINT8) | |
A = np.atleast_2d(arr).flatten('F') | |
for el in A: | |
for f in fieldnames: | |
self.write(el[f]) | |
def write_object(self, arr): | |
'''Same as writing structs, except different mx class, and extra | |
classname element after header | |
''' | |
self.write_header(matdims(arr, self.oned_as), | |
mxOBJECT_CLASS) | |
self.write_element(np.array(arr.classname, dtype='S'), | |
mdtype=miINT8) | |
self._write_items(arr) | |
class MatFile5Writer: | |
''' Class for writing mat5 files ''' | |
def __init__(self, file_stream, | |
do_compression=False, | |
unicode_strings=False, | |
global_vars=None, | |
long_field_names=False, | |
oned_as='row'): | |
''' Initialize writer for matlab 5 format files | |
Parameters | |
---------- | |
%(do_compression)s | |
%(unicode_strings)s | |
global_vars : None or sequence of strings, optional | |
Names of variables to be marked as global for matlab | |
%(long_fields)s | |
%(oned_as)s | |
''' | |
self.file_stream = file_stream | |
self.do_compression = do_compression | |
self.unicode_strings = unicode_strings | |
if global_vars: | |
self.global_vars = global_vars | |
else: | |
self.global_vars = [] | |
self.long_field_names = long_field_names | |
self.oned_as = oned_as | |
self._matrix_writer = None | |
def write_file_header(self): | |
# write header | |
hdr = np.zeros((), NDT_FILE_HDR) | |
hdr['description'] = (f'MATLAB 5.0 MAT-file Platform: {os.name}, ' | |
f'Created on: {time.asctime()}') | |
hdr['version'] = 0x0100 | |
hdr['endian_test'] = np.ndarray(shape=(), | |
dtype='S2', | |
buffer=np.uint16(0x4d49)) | |
self.file_stream.write(hdr.tobytes()) | |
def put_variables(self, mdict, write_header=None): | |
''' Write variables in `mdict` to stream | |
Parameters | |
---------- | |
mdict : mapping | |
mapping with method ``items`` returns name, contents pairs where | |
``name`` which will appear in the matlab workspace in file load, and | |
``contents`` is something writeable to a matlab file, such as a NumPy | |
array. | |
write_header : {None, True, False}, optional | |
If True, then write the matlab file header before writing the | |
variables. If None (the default) then write the file header | |
if we are at position 0 in the stream. By setting False | |
here, and setting the stream position to the end of the file, | |
you can append variables to a matlab file | |
''' | |
# write header if requested, or None and start of file | |
if write_header is None: | |
write_header = self.file_stream.tell() == 0 | |
if write_header: | |
self.write_file_header() | |
self._matrix_writer = VarWriter5(self) | |
for name, var in mdict.items(): | |
if name[0] == '_': | |
continue | |
is_global = name in self.global_vars | |
if self.do_compression: | |
stream = BytesIO() | |
self._matrix_writer.file_stream = stream | |
self._matrix_writer.write_top(var, name.encode('latin1'), is_global) | |
out_str = zlib.compress(stream.getvalue()) | |
tag = np.empty((), NDT_TAG_FULL) | |
tag['mdtype'] = miCOMPRESSED | |
tag['byte_count'] = len(out_str) | |
self.file_stream.write(tag.tobytes()) | |
self.file_stream.write(out_str) | |
else: # not compressing | |
self._matrix_writer.write_top(var, name.encode('latin1'), is_global) | |