peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/odr
/_models.py
""" Collection of Model instances for use with the odrpack fitting package. | |
""" | |
import numpy as np | |
from scipy.odr._odrpack import Model | |
__all__ = ['Model', 'exponential', 'multilinear', 'unilinear', 'quadratic', | |
'polynomial'] | |
def _lin_fcn(B, x): | |
a, b = B[0], B[1:] | |
b.shape = (b.shape[0], 1) | |
return a + (x*b).sum(axis=0) | |
def _lin_fjb(B, x): | |
a = np.ones(x.shape[-1], float) | |
res = np.concatenate((a, x.ravel())) | |
res.shape = (B.shape[-1], x.shape[-1]) | |
return res | |
def _lin_fjd(B, x): | |
b = B[1:] | |
b = np.repeat(b, (x.shape[-1],)*b.shape[-1], axis=0) | |
b.shape = x.shape | |
return b | |
def _lin_est(data): | |
# Eh. The answer is analytical, so just return all ones. | |
# Don't return zeros since that will interfere with | |
# ODRPACK's auto-scaling procedures. | |
if len(data.x.shape) == 2: | |
m = data.x.shape[0] | |
else: | |
m = 1 | |
return np.ones((m + 1,), float) | |
def _poly_fcn(B, x, powers): | |
a, b = B[0], B[1:] | |
b.shape = (b.shape[0], 1) | |
return a + np.sum(b * np.power(x, powers), axis=0) | |
def _poly_fjacb(B, x, powers): | |
res = np.concatenate((np.ones(x.shape[-1], float), | |
np.power(x, powers).flat)) | |
res.shape = (B.shape[-1], x.shape[-1]) | |
return res | |
def _poly_fjacd(B, x, powers): | |
b = B[1:] | |
b.shape = (b.shape[0], 1) | |
b = b * powers | |
return np.sum(b * np.power(x, powers-1), axis=0) | |
def _exp_fcn(B, x): | |
return B[0] + np.exp(B[1] * x) | |
def _exp_fjd(B, x): | |
return B[1] * np.exp(B[1] * x) | |
def _exp_fjb(B, x): | |
res = np.concatenate((np.ones(x.shape[-1], float), x * np.exp(B[1] * x))) | |
res.shape = (2, x.shape[-1]) | |
return res | |
def _exp_est(data): | |
# Eh. | |
return np.array([1., 1.]) | |
class _MultilinearModel(Model): | |
r""" | |
Arbitrary-dimensional linear model | |
This model is defined by :math:`y=\beta_0 + \sum_{i=1}^m \beta_i x_i` | |
Examples | |
-------- | |
We can calculate orthogonal distance regression with an arbitrary | |
dimensional linear model: | |
>>> from scipy import odr | |
>>> import numpy as np | |
>>> x = np.linspace(0.0, 5.0) | |
>>> y = 10.0 + 5.0 * x | |
>>> data = odr.Data(x, y) | |
>>> odr_obj = odr.ODR(data, odr.multilinear) | |
>>> output = odr_obj.run() | |
>>> print(output.beta) | |
[10. 5.] | |
""" | |
def __init__(self): | |
super().__init__( | |
_lin_fcn, fjacb=_lin_fjb, fjacd=_lin_fjd, estimate=_lin_est, | |
meta={'name': 'Arbitrary-dimensional Linear', | |
'equ': 'y = B_0 + Sum[i=1..m, B_i * x_i]', | |
'TeXequ': r'$y=\beta_0 + \sum_{i=1}^m \beta_i x_i$'}) | |
multilinear = _MultilinearModel() | |
def polynomial(order): | |
""" | |
Factory function for a general polynomial model. | |
Parameters | |
---------- | |
order : int or sequence | |
If an integer, it becomes the order of the polynomial to fit. If | |
a sequence of numbers, then these are the explicit powers in the | |
polynomial. | |
A constant term (power 0) is always included, so don't include 0. | |
Thus, polynomial(n) is equivalent to polynomial(range(1, n+1)). | |
Returns | |
------- | |
polynomial : Model instance | |
Model instance. | |
Examples | |
-------- | |
We can fit an input data using orthogonal distance regression (ODR) with | |
a polynomial model: | |
>>> import numpy as np | |
>>> import matplotlib.pyplot as plt | |
>>> from scipy import odr | |
>>> x = np.linspace(0.0, 5.0) | |
>>> y = np.sin(x) | |
>>> poly_model = odr.polynomial(3) # using third order polynomial model | |
>>> data = odr.Data(x, y) | |
>>> odr_obj = odr.ODR(data, poly_model) | |
>>> output = odr_obj.run() # running ODR fitting | |
>>> poly = np.poly1d(output.beta[::-1]) | |
>>> poly_y = poly(x) | |
>>> plt.plot(x, y, label="input data") | |
>>> plt.plot(x, poly_y, label="polynomial ODR") | |
>>> plt.legend() | |
>>> plt.show() | |
""" | |
powers = np.asarray(order) | |
if powers.shape == (): | |
# Scalar. | |
powers = np.arange(1, powers + 1) | |
powers.shape = (len(powers), 1) | |
len_beta = len(powers) + 1 | |
def _poly_est(data, len_beta=len_beta): | |
# Eh. Ignore data and return all ones. | |
return np.ones((len_beta,), float) | |
return Model(_poly_fcn, fjacd=_poly_fjacd, fjacb=_poly_fjacb, | |
estimate=_poly_est, extra_args=(powers,), | |
meta={'name': 'Sorta-general Polynomial', | |
'equ': 'y = B_0 + Sum[i=1..%s, B_i * (x**i)]' % (len_beta-1), | |
'TeXequ': r'$y=\beta_0 + \sum_{i=1}^{%s} \beta_i x^i$' % | |
(len_beta-1)}) | |
class _ExponentialModel(Model): | |
r""" | |
Exponential model | |
This model is defined by :math:`y=\beta_0 + e^{\beta_1 x}` | |
Examples | |
-------- | |
We can calculate orthogonal distance regression with an exponential model: | |
>>> from scipy import odr | |
>>> import numpy as np | |
>>> x = np.linspace(0.0, 5.0) | |
>>> y = -10.0 + np.exp(0.5*x) | |
>>> data = odr.Data(x, y) | |
>>> odr_obj = odr.ODR(data, odr.exponential) | |
>>> output = odr_obj.run() | |
>>> print(output.beta) | |
[-10. 0.5] | |
""" | |
def __init__(self): | |
super().__init__(_exp_fcn, fjacd=_exp_fjd, fjacb=_exp_fjb, | |
estimate=_exp_est, | |
meta={'name': 'Exponential', | |
'equ': 'y= B_0 + exp(B_1 * x)', | |
'TeXequ': r'$y=\beta_0 + e^{\beta_1 x}$'}) | |
exponential = _ExponentialModel() | |
def _unilin(B, x): | |
return x*B[0] + B[1] | |
def _unilin_fjd(B, x): | |
return np.ones(x.shape, float) * B[0] | |
def _unilin_fjb(B, x): | |
_ret = np.concatenate((x, np.ones(x.shape, float))) | |
_ret.shape = (2,) + x.shape | |
return _ret | |
def _unilin_est(data): | |
return (1., 1.) | |
def _quadratic(B, x): | |
return x*(x*B[0] + B[1]) + B[2] | |
def _quad_fjd(B, x): | |
return 2*x*B[0] + B[1] | |
def _quad_fjb(B, x): | |
_ret = np.concatenate((x*x, x, np.ones(x.shape, float))) | |
_ret.shape = (3,) + x.shape | |
return _ret | |
def _quad_est(data): | |
return (1.,1.,1.) | |
class _UnilinearModel(Model): | |
r""" | |
Univariate linear model | |
This model is defined by :math:`y = \beta_0 x + \beta_1` | |
Examples | |
-------- | |
We can calculate orthogonal distance regression with an unilinear model: | |
>>> from scipy import odr | |
>>> import numpy as np | |
>>> x = np.linspace(0.0, 5.0) | |
>>> y = 1.0 * x + 2.0 | |
>>> data = odr.Data(x, y) | |
>>> odr_obj = odr.ODR(data, odr.unilinear) | |
>>> output = odr_obj.run() | |
>>> print(output.beta) | |
[1. 2.] | |
""" | |
def __init__(self): | |
super().__init__(_unilin, fjacd=_unilin_fjd, fjacb=_unilin_fjb, | |
estimate=_unilin_est, | |
meta={'name': 'Univariate Linear', | |
'equ': 'y = B_0 * x + B_1', | |
'TeXequ': '$y = \\beta_0 x + \\beta_1$'}) | |
unilinear = _UnilinearModel() | |
class _QuadraticModel(Model): | |
r""" | |
Quadratic model | |
This model is defined by :math:`y = \beta_0 x^2 + \beta_1 x + \beta_2` | |
Examples | |
-------- | |
We can calculate orthogonal distance regression with a quadratic model: | |
>>> from scipy import odr | |
>>> import numpy as np | |
>>> x = np.linspace(0.0, 5.0) | |
>>> y = 1.0 * x ** 2 + 2.0 * x + 3.0 | |
>>> data = odr.Data(x, y) | |
>>> odr_obj = odr.ODR(data, odr.quadratic) | |
>>> output = odr_obj.run() | |
>>> print(output.beta) | |
[1. 2. 3.] | |
""" | |
def __init__(self): | |
super().__init__( | |
_quadratic, fjacd=_quad_fjd, fjacb=_quad_fjb, estimate=_quad_est, | |
meta={'name': 'Quadratic', | |
'equ': 'y = B_0*x**2 + B_1*x + B_2', | |
'TeXequ': '$y = \\beta_0 x^2 + \\beta_1 x + \\beta_2'}) | |
quadratic = _QuadraticModel() | |