peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/special
/_logsumexp.py
import numpy as np | |
from scipy._lib._util import _asarray_validated | |
__all__ = ["logsumexp", "softmax", "log_softmax"] | |
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False): | |
"""Compute the log of the sum of exponentials of input elements. | |
Parameters | |
---------- | |
a : array_like | |
Input array. | |
axis : None or int or tuple of ints, optional | |
Axis or axes over which the sum is taken. By default `axis` is None, | |
and all elements are summed. | |
.. versionadded:: 0.11.0 | |
b : array-like, optional | |
Scaling factor for exp(`a`) must be of the same shape as `a` or | |
broadcastable to `a`. These values may be negative in order to | |
implement subtraction. | |
.. versionadded:: 0.12.0 | |
keepdims : bool, optional | |
If this is set to True, the axes which are reduced are left in the | |
result as dimensions with size one. With this option, the result | |
will broadcast correctly against the original array. | |
.. versionadded:: 0.15.0 | |
return_sign : bool, optional | |
If this is set to True, the result will be a pair containing sign | |
information; if False, results that are negative will be returned | |
as NaN. Default is False (no sign information). | |
.. versionadded:: 0.16.0 | |
Returns | |
------- | |
res : ndarray | |
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically | |
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))`` | |
is returned. If ``return_sign`` is True, ``res`` contains the log of | |
the absolute value of the argument. | |
sgn : ndarray | |
If ``return_sign`` is True, this will be an array of floating-point | |
numbers matching res containing +1, 0, -1 (for real-valued inputs) | |
or a complex phase (for complex inputs). This gives the sign of the | |
argument of the logarithm in ``res``. | |
If ``return_sign`` is False, only one result is returned. | |
See Also | |
-------- | |
numpy.logaddexp, numpy.logaddexp2 | |
Notes | |
----- | |
NumPy has a logaddexp function which is very similar to `logsumexp`, but | |
only handles two arguments. `logaddexp.reduce` is similar to this | |
function, but may be less stable. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.special import logsumexp | |
>>> a = np.arange(10) | |
>>> logsumexp(a) | |
9.4586297444267107 | |
>>> np.log(np.sum(np.exp(a))) | |
9.4586297444267107 | |
With weights | |
>>> a = np.arange(10) | |
>>> b = np.arange(10, 0, -1) | |
>>> logsumexp(a, b=b) | |
9.9170178533034665 | |
>>> np.log(np.sum(b*np.exp(a))) | |
9.9170178533034647 | |
Returning a sign flag | |
>>> logsumexp([1,2],b=[1,-1],return_sign=True) | |
(1.5413248546129181, -1.0) | |
Notice that `logsumexp` does not directly support masked arrays. To use it | |
on a masked array, convert the mask into zero weights: | |
>>> a = np.ma.array([np.log(2), 2, np.log(3)], | |
... mask=[False, True, False]) | |
>>> b = (~a.mask).astype(int) | |
>>> logsumexp(a.data, b=b), np.log(5) | |
1.6094379124341005, 1.6094379124341005 | |
""" | |
a = _asarray_validated(a, check_finite=False) | |
if b is not None: | |
a, b = np.broadcast_arrays(a, b) | |
if np.any(b == 0): | |
a = a + 0. # promote to at least float | |
a[b == 0] = -np.inf | |
# Scale by real part for complex inputs, because this affects | |
# the magnitude of the exponential. | |
a_max = np.amax(a.real, axis=axis, keepdims=True) | |
if a_max.ndim > 0: | |
a_max[~np.isfinite(a_max)] = 0 | |
elif not np.isfinite(a_max): | |
a_max = 0 | |
if b is not None: | |
b = np.asarray(b) | |
tmp = b * np.exp(a - a_max) | |
else: | |
tmp = np.exp(a - a_max) | |
# suppress warnings about log of zero | |
with np.errstate(divide='ignore'): | |
s = np.sum(tmp, axis=axis, keepdims=keepdims) | |
if return_sign: | |
# For complex, use the numpy>=2.0 convention for sign. | |
if np.issubdtype(s.dtype, np.complexfloating): | |
sgn = s / np.where(s == 0, 1, abs(s)) | |
else: | |
sgn = np.sign(s) | |
s = abs(s) | |
out = np.log(s) | |
if not keepdims: | |
a_max = np.squeeze(a_max, axis=axis) | |
out += a_max | |
if return_sign: | |
return out, sgn | |
else: | |
return out | |
def softmax(x, axis=None): | |
r"""Compute the softmax function. | |
The softmax function transforms each element of a collection by | |
computing the exponential of each element divided by the sum of the | |
exponentials of all the elements. That is, if `x` is a one-dimensional | |
numpy array:: | |
softmax(x) = np.exp(x)/sum(np.exp(x)) | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axis : int or tuple of ints, optional | |
Axis to compute values along. Default is None and softmax will be | |
computed over the entire array `x`. | |
Returns | |
------- | |
s : ndarray | |
An array the same shape as `x`. The result will sum to 1 along the | |
specified axis. | |
Notes | |
----- | |
The formula for the softmax function :math:`\sigma(x)` for a vector | |
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is | |
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}} | |
The `softmax` function is the gradient of `logsumexp`. | |
The implementation uses shifting to avoid overflow. See [1]_ for more | |
details. | |
.. versionadded:: 1.2.0 | |
References | |
---------- | |
.. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the | |
log-sum-exp and softmax functions", IMA Journal of Numerical Analysis, | |
Vol.41(4), :doi:`10.1093/imanum/draa038`. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.special import softmax | |
>>> np.set_printoptions(precision=5) | |
>>> x = np.array([[1, 0.5, 0.2, 3], | |
... [1, -1, 7, 3], | |
... [2, 12, 13, 3]]) | |
... | |
Compute the softmax transformation over the entire array. | |
>>> m = softmax(x) | |
>>> m | |
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05], | |
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05], | |
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]]) | |
>>> m.sum() | |
1.0 | |
Compute the softmax transformation along the first axis (i.e., the | |
columns). | |
>>> m = softmax(x, axis=0) | |
>>> m | |
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01], | |
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01], | |
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]]) | |
>>> m.sum(axis=0) | |
array([ 1., 1., 1., 1.]) | |
Compute the softmax transformation along the second axis (i.e., the rows). | |
>>> m = softmax(x, axis=1) | |
>>> m | |
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01], | |
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02], | |
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]]) | |
>>> m.sum(axis=1) | |
array([ 1., 1., 1.]) | |
""" | |
x = _asarray_validated(x, check_finite=False) | |
x_max = np.amax(x, axis=axis, keepdims=True) | |
exp_x_shifted = np.exp(x - x_max) | |
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True) | |
def log_softmax(x, axis=None): | |
r"""Compute the logarithm of the softmax function. | |
In principle:: | |
log_softmax(x) = log(softmax(x)) | |
but using a more accurate implementation. | |
Parameters | |
---------- | |
x : array_like | |
Input array. | |
axis : int or tuple of ints, optional | |
Axis to compute values along. Default is None and softmax will be | |
computed over the entire array `x`. | |
Returns | |
------- | |
s : ndarray or scalar | |
An array with the same shape as `x`. Exponential of the result will | |
sum to 1 along the specified axis. If `x` is a scalar, a scalar is | |
returned. | |
Notes | |
----- | |
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that | |
make `softmax` saturate (see examples below). | |
.. versionadded:: 1.5.0 | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> from scipy.special import log_softmax | |
>>> from scipy.special import softmax | |
>>> np.set_printoptions(precision=5) | |
>>> x = np.array([1000.0, 1.0]) | |
>>> y = log_softmax(x) | |
>>> y | |
array([ 0., -999.]) | |
>>> with np.errstate(divide='ignore'): | |
... y = np.log(softmax(x)) | |
... | |
>>> y | |
array([ 0., -inf]) | |
""" | |
x = _asarray_validated(x, check_finite=False) | |
x_max = np.amax(x, axis=axis, keepdims=True) | |
if x_max.ndim > 0: | |
x_max[~np.isfinite(x_max)] = 0 | |
elif not np.isfinite(x_max): | |
x_max = 0 | |
tmp = x - x_max | |
exp_tmp = np.exp(tmp) | |
# suppress warnings about log of zero | |
with np.errstate(divide='ignore'): | |
s = np.sum(exp_tmp, axis=axis, keepdims=True) | |
out = np.log(s) | |
out = tmp - out | |
return out | |