peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/tree
/_export.py
""" | |
This module defines export functions for decision trees. | |
""" | |
# Authors: Gilles Louppe <[email protected]> | |
# Peter Prettenhofer <[email protected]> | |
# Brian Holt <[email protected]> | |
# Noel Dawe <[email protected]> | |
# Satrajit Gosh <[email protected]> | |
# Trevor Stephens <[email protected]> | |
# Li Li <[email protected]> | |
# Giuseppe Vettigli <[email protected]> | |
# License: BSD 3 clause | |
from collections.abc import Iterable | |
from io import StringIO | |
from numbers import Integral | |
import numpy as np | |
from ..base import is_classifier | |
from ..utils._param_validation import HasMethods, Interval, StrOptions, validate_params | |
from ..utils.validation import check_array, check_is_fitted | |
from . import DecisionTreeClassifier, DecisionTreeRegressor, _criterion, _tree | |
from ._reingold_tilford import Tree, buchheim | |
def _color_brew(n): | |
"""Generate n colors with equally spaced hues. | |
Parameters | |
---------- | |
n : int | |
The number of colors required. | |
Returns | |
------- | |
color_list : list, length n | |
List of n tuples of form (R, G, B) being the components of each color. | |
""" | |
color_list = [] | |
# Initialize saturation & value; calculate chroma & value shift | |
s, v = 0.75, 0.9 | |
c = s * v | |
m = v - c | |
for h in np.arange(25, 385, 360.0 / n).astype(int): | |
# Calculate some intermediate values | |
h_bar = h / 60.0 | |
x = c * (1 - abs((h_bar % 2) - 1)) | |
# Initialize RGB with same hue & chroma as our color | |
rgb = [ | |
(c, x, 0), | |
(x, c, 0), | |
(0, c, x), | |
(0, x, c), | |
(x, 0, c), | |
(c, 0, x), | |
(c, x, 0), | |
] | |
r, g, b = rgb[int(h_bar)] | |
# Shift the initial RGB values to match value and store | |
rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] | |
color_list.append(rgb) | |
return color_list | |
class Sentinel: | |
def __repr__(self): | |
return '"tree.dot"' | |
SENTINEL = Sentinel() | |
def plot_tree( | |
decision_tree, | |
*, | |
max_depth=None, | |
feature_names=None, | |
class_names=None, | |
label="all", | |
filled=False, | |
impurity=True, | |
node_ids=False, | |
proportion=False, | |
rounded=False, | |
precision=3, | |
ax=None, | |
fontsize=None, | |
): | |
"""Plot a decision tree. | |
The sample counts that are shown are weighted with any sample_weights that | |
might be present. | |
The visualization is fit automatically to the size of the axis. | |
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control | |
the size of the rendering. | |
Read more in the :ref:`User Guide <tree>`. | |
.. versionadded:: 0.21 | |
Parameters | |
---------- | |
decision_tree : decision tree regressor or classifier | |
The decision tree to be plotted. | |
max_depth : int, default=None | |
The maximum depth of the representation. If None, the tree is fully | |
generated. | |
feature_names : array-like of str, default=None | |
Names of each of the features. | |
If None, generic names will be used ("x[0]", "x[1]", ...). | |
class_names : array-like of str or True, default=None | |
Names of each of the target classes in ascending numerical order. | |
Only relevant for classification and not supported for multi-output. | |
If ``True``, shows a symbolic representation of the class name. | |
label : {'all', 'root', 'none'}, default='all' | |
Whether to show informative labels for impurity, etc. | |
Options include 'all' to show at every node, 'root' to show only at | |
the top root node, or 'none' to not show at any node. | |
filled : bool, default=False | |
When set to ``True``, paint nodes to indicate majority class for | |
classification, extremity of values for regression, or purity of node | |
for multi-output. | |
impurity : bool, default=True | |
When set to ``True``, show the impurity at each node. | |
node_ids : bool, default=False | |
When set to ``True``, show the ID number on each node. | |
proportion : bool, default=False | |
When set to ``True``, change the display of 'values' and/or 'samples' | |
to be proportions and percentages respectively. | |
rounded : bool, default=False | |
When set to ``True``, draw node boxes with rounded corners and use | |
Helvetica fonts instead of Times-Roman. | |
precision : int, default=3 | |
Number of digits of precision for floating point in the values of | |
impurity, threshold and value attributes of each node. | |
ax : matplotlib axis, default=None | |
Axes to plot to. If None, use current axis. Any previous content | |
is cleared. | |
fontsize : int, default=None | |
Size of text font. If None, determined automatically to fit figure. | |
Returns | |
------- | |
annotations : list of artists | |
List containing the artists for the annotation boxes making up the | |
tree. | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_iris | |
>>> from sklearn import tree | |
>>> clf = tree.DecisionTreeClassifier(random_state=0) | |
>>> iris = load_iris() | |
>>> clf = clf.fit(iris.data, iris.target) | |
>>> tree.plot_tree(clf) | |
[...] | |
""" | |
check_is_fitted(decision_tree) | |
exporter = _MPLTreeExporter( | |
max_depth=max_depth, | |
feature_names=feature_names, | |
class_names=class_names, | |
label=label, | |
filled=filled, | |
impurity=impurity, | |
node_ids=node_ids, | |
proportion=proportion, | |
rounded=rounded, | |
precision=precision, | |
fontsize=fontsize, | |
) | |
return exporter.export(decision_tree, ax=ax) | |
class _BaseTreeExporter: | |
def __init__( | |
self, | |
max_depth=None, | |
feature_names=None, | |
class_names=None, | |
label="all", | |
filled=False, | |
impurity=True, | |
node_ids=False, | |
proportion=False, | |
rounded=False, | |
precision=3, | |
fontsize=None, | |
): | |
self.max_depth = max_depth | |
self.feature_names = feature_names | |
self.class_names = class_names | |
self.label = label | |
self.filled = filled | |
self.impurity = impurity | |
self.node_ids = node_ids | |
self.proportion = proportion | |
self.rounded = rounded | |
self.precision = precision | |
self.fontsize = fontsize | |
def get_color(self, value): | |
# Find the appropriate color & intensity for a node | |
if self.colors["bounds"] is None: | |
# Classification tree | |
color = list(self.colors["rgb"][np.argmax(value)]) | |
sorted_values = sorted(value, reverse=True) | |
if len(sorted_values) == 1: | |
alpha = 0.0 | |
else: | |
alpha = (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1]) | |
else: | |
# Regression tree or multi-output | |
color = list(self.colors["rgb"][0]) | |
alpha = (value - self.colors["bounds"][0]) / ( | |
self.colors["bounds"][1] - self.colors["bounds"][0] | |
) | |
# compute the color as alpha against white | |
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color] | |
# Return html color code in #RRGGBB format | |
return "#%2x%2x%2x" % tuple(color) | |
def get_fill_color(self, tree, node_id): | |
# Fetch appropriate color for node | |
if "rgb" not in self.colors: | |
# Initialize colors and bounds if required | |
self.colors["rgb"] = _color_brew(tree.n_classes[0]) | |
if tree.n_outputs != 1: | |
# Find max and min impurities for multi-output | |
self.colors["bounds"] = (np.min(-tree.impurity), np.max(-tree.impurity)) | |
elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1: | |
# Find max and min values in leaf nodes for regression | |
self.colors["bounds"] = (np.min(tree.value), np.max(tree.value)) | |
if tree.n_outputs == 1: | |
node_val = tree.value[node_id][0, :] | |
if ( | |
tree.n_classes[0] == 1 | |
and isinstance(node_val, Iterable) | |
and self.colors["bounds"] is not None | |
): | |
# Unpack the float only for the regression tree case. | |
# Classification tree requires an Iterable in `get_color`. | |
node_val = node_val.item() | |
else: | |
# If multi-output color node by impurity | |
node_val = -tree.impurity[node_id] | |
return self.get_color(node_val) | |
def node_to_str(self, tree, node_id, criterion): | |
# Generate the node content string | |
if tree.n_outputs == 1: | |
value = tree.value[node_id][0, :] | |
else: | |
value = tree.value[node_id] | |
# Should labels be shown? | |
labels = (self.label == "root" and node_id == 0) or self.label == "all" | |
characters = self.characters | |
node_string = characters[-1] | |
# Write node ID | |
if self.node_ids: | |
if labels: | |
node_string += "node " | |
node_string += characters[0] + str(node_id) + characters[4] | |
# Write decision criteria | |
if tree.children_left[node_id] != _tree.TREE_LEAF: | |
# Always write node decision criteria, except for leaves | |
if self.feature_names is not None: | |
feature = self.feature_names[tree.feature[node_id]] | |
else: | |
feature = "x%s%s%s" % ( | |
characters[1], | |
tree.feature[node_id], | |
characters[2], | |
) | |
node_string += "%s %s %s%s" % ( | |
feature, | |
characters[3], | |
round(tree.threshold[node_id], self.precision), | |
characters[4], | |
) | |
# Write impurity | |
if self.impurity: | |
if isinstance(criterion, _criterion.FriedmanMSE): | |
criterion = "friedman_mse" | |
elif isinstance(criterion, _criterion.MSE) or criterion == "squared_error": | |
criterion = "squared_error" | |
elif not isinstance(criterion, str): | |
criterion = "impurity" | |
if labels: | |
node_string += "%s = " % criterion | |
node_string += ( | |
str(round(tree.impurity[node_id], self.precision)) + characters[4] | |
) | |
# Write node sample count | |
if labels: | |
node_string += "samples = " | |
if self.proportion: | |
percent = ( | |
100.0 * tree.n_node_samples[node_id] / float(tree.n_node_samples[0]) | |
) | |
node_string += str(round(percent, 1)) + "%" + characters[4] | |
else: | |
node_string += str(tree.n_node_samples[node_id]) + characters[4] | |
# Write node class distribution / regression value | |
if not self.proportion and tree.n_classes[0] != 1: | |
# For classification this will show the proportion of samples | |
value = value * tree.weighted_n_node_samples[node_id] | |
if labels: | |
node_string += "value = " | |
if tree.n_classes[0] == 1: | |
# Regression | |
value_text = np.around(value, self.precision) | |
elif self.proportion: | |
# Classification | |
value_text = np.around(value, self.precision) | |
elif np.all(np.equal(np.mod(value, 1), 0)): | |
# Classification without floating-point weights | |
value_text = value.astype(int) | |
else: | |
# Classification with floating-point weights | |
value_text = np.around(value, self.precision) | |
# Strip whitespace | |
value_text = str(value_text.astype("S32")).replace("b'", "'") | |
value_text = value_text.replace("' '", ", ").replace("'", "") | |
if tree.n_classes[0] == 1 and tree.n_outputs == 1: | |
value_text = value_text.replace("[", "").replace("]", "") | |
value_text = value_text.replace("\n ", characters[4]) | |
node_string += value_text + characters[4] | |
# Write node majority class | |
if ( | |
self.class_names is not None | |
and tree.n_classes[0] != 1 | |
and tree.n_outputs == 1 | |
): | |
# Only done for single-output classification trees | |
if labels: | |
node_string += "class = " | |
if self.class_names is not True: | |
class_name = self.class_names[np.argmax(value)] | |
else: | |
class_name = "y%s%s%s" % ( | |
characters[1], | |
np.argmax(value), | |
characters[2], | |
) | |
node_string += class_name | |
# Clean up any trailing newlines | |
if node_string.endswith(characters[4]): | |
node_string = node_string[: -len(characters[4])] | |
return node_string + characters[5] | |
class _DOTTreeExporter(_BaseTreeExporter): | |
def __init__( | |
self, | |
out_file=SENTINEL, | |
max_depth=None, | |
feature_names=None, | |
class_names=None, | |
label="all", | |
filled=False, | |
leaves_parallel=False, | |
impurity=True, | |
node_ids=False, | |
proportion=False, | |
rotate=False, | |
rounded=False, | |
special_characters=False, | |
precision=3, | |
fontname="helvetica", | |
): | |
super().__init__( | |
max_depth=max_depth, | |
feature_names=feature_names, | |
class_names=class_names, | |
label=label, | |
filled=filled, | |
impurity=impurity, | |
node_ids=node_ids, | |
proportion=proportion, | |
rounded=rounded, | |
precision=precision, | |
) | |
self.leaves_parallel = leaves_parallel | |
self.out_file = out_file | |
self.special_characters = special_characters | |
self.fontname = fontname | |
self.rotate = rotate | |
# PostScript compatibility for special characters | |
if special_characters: | |
self.characters = ["#", "<SUB>", "</SUB>", "≤", "<br/>", ">", "<"] | |
else: | |
self.characters = ["#", "[", "]", "<=", "\\n", '"', '"'] | |
# The depth of each node for plotting with 'leaf' option | |
self.ranks = {"leaves": []} | |
# The colors to render each node with | |
self.colors = {"bounds": None} | |
def export(self, decision_tree): | |
# Check length of feature_names before getting into the tree node | |
# Raise error if length of feature_names does not match | |
# n_features_in_ in the decision_tree | |
if self.feature_names is not None: | |
if len(self.feature_names) != decision_tree.n_features_in_: | |
raise ValueError( | |
"Length of feature_names, %d does not match number of features, %d" | |
% (len(self.feature_names), decision_tree.n_features_in_) | |
) | |
# each part writes to out_file | |
self.head() | |
# Now recurse the tree and add node & edge attributes | |
if isinstance(decision_tree, _tree.Tree): | |
self.recurse(decision_tree, 0, criterion="impurity") | |
else: | |
self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) | |
self.tail() | |
def tail(self): | |
# If required, draw leaf nodes at same depth as each other | |
if self.leaves_parallel: | |
for rank in sorted(self.ranks): | |
self.out_file.write( | |
"{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n" | |
) | |
self.out_file.write("}") | |
def head(self): | |
self.out_file.write("digraph Tree {\n") | |
# Specify node aesthetics | |
self.out_file.write("node [shape=box") | |
rounded_filled = [] | |
if self.filled: | |
rounded_filled.append("filled") | |
if self.rounded: | |
rounded_filled.append("rounded") | |
if len(rounded_filled) > 0: | |
self.out_file.write( | |
', style="%s", color="black"' % ", ".join(rounded_filled) | |
) | |
self.out_file.write(', fontname="%s"' % self.fontname) | |
self.out_file.write("] ;\n") | |
# Specify graph & edge aesthetics | |
if self.leaves_parallel: | |
self.out_file.write("graph [ranksep=equally, splines=polyline] ;\n") | |
self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname) | |
if self.rotate: | |
self.out_file.write("rankdir=LR ;\n") | |
def recurse(self, tree, node_id, criterion, parent=None, depth=0): | |
if node_id == _tree.TREE_LEAF: | |
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) | |
left_child = tree.children_left[node_id] | |
right_child = tree.children_right[node_id] | |
# Add node with description | |
if self.max_depth is None or depth <= self.max_depth: | |
# Collect ranks for 'leaf' option in plot_options | |
if left_child == _tree.TREE_LEAF: | |
self.ranks["leaves"].append(str(node_id)) | |
elif str(depth) not in self.ranks: | |
self.ranks[str(depth)] = [str(node_id)] | |
else: | |
self.ranks[str(depth)].append(str(node_id)) | |
self.out_file.write( | |
"%d [label=%s" % (node_id, self.node_to_str(tree, node_id, criterion)) | |
) | |
if self.filled: | |
self.out_file.write( | |
', fillcolor="%s"' % self.get_fill_color(tree, node_id) | |
) | |
self.out_file.write("] ;\n") | |
if parent is not None: | |
# Add edge to parent | |
self.out_file.write("%d -> %d" % (parent, node_id)) | |
if parent == 0: | |
# Draw True/False labels if parent is root node | |
angles = np.array([45, -45]) * ((self.rotate - 0.5) * -2) | |
self.out_file.write(" [labeldistance=2.5, labelangle=") | |
if node_id == 1: | |
self.out_file.write('%d, headlabel="True"]' % angles[0]) | |
else: | |
self.out_file.write('%d, headlabel="False"]' % angles[1]) | |
self.out_file.write(" ;\n") | |
if left_child != _tree.TREE_LEAF: | |
self.recurse( | |
tree, | |
left_child, | |
criterion=criterion, | |
parent=node_id, | |
depth=depth + 1, | |
) | |
self.recurse( | |
tree, | |
right_child, | |
criterion=criterion, | |
parent=node_id, | |
depth=depth + 1, | |
) | |
else: | |
self.ranks["leaves"].append(str(node_id)) | |
self.out_file.write('%d [label="(...)"' % node_id) | |
if self.filled: | |
# color cropped nodes grey | |
self.out_file.write(', fillcolor="#C0C0C0"') | |
self.out_file.write("] ;\n" % node_id) | |
if parent is not None: | |
# Add edge to parent | |
self.out_file.write("%d -> %d ;\n" % (parent, node_id)) | |
class _MPLTreeExporter(_BaseTreeExporter): | |
def __init__( | |
self, | |
max_depth=None, | |
feature_names=None, | |
class_names=None, | |
label="all", | |
filled=False, | |
impurity=True, | |
node_ids=False, | |
proportion=False, | |
rounded=False, | |
precision=3, | |
fontsize=None, | |
): | |
super().__init__( | |
max_depth=max_depth, | |
feature_names=feature_names, | |
class_names=class_names, | |
label=label, | |
filled=filled, | |
impurity=impurity, | |
node_ids=node_ids, | |
proportion=proportion, | |
rounded=rounded, | |
precision=precision, | |
) | |
self.fontsize = fontsize | |
# The depth of each node for plotting with 'leaf' option | |
self.ranks = {"leaves": []} | |
# The colors to render each node with | |
self.colors = {"bounds": None} | |
self.characters = ["#", "[", "]", "<=", "\n", "", ""] | |
self.bbox_args = dict() | |
if self.rounded: | |
self.bbox_args["boxstyle"] = "round" | |
self.arrow_args = dict(arrowstyle="<-") | |
def _make_tree(self, node_id, et, criterion, depth=0): | |
# traverses _tree.Tree recursively, builds intermediate | |
# "_reingold_tilford.Tree" object | |
name = self.node_to_str(et, node_id, criterion=criterion) | |
if et.children_left[node_id] != _tree.TREE_LEAF and ( | |
self.max_depth is None or depth <= self.max_depth | |
): | |
children = [ | |
self._make_tree( | |
et.children_left[node_id], et, criterion, depth=depth + 1 | |
), | |
self._make_tree( | |
et.children_right[node_id], et, criterion, depth=depth + 1 | |
), | |
] | |
else: | |
return Tree(name, node_id) | |
return Tree(name, node_id, *children) | |
def export(self, decision_tree, ax=None): | |
import matplotlib.pyplot as plt | |
from matplotlib.text import Annotation | |
if ax is None: | |
ax = plt.gca() | |
ax.clear() | |
ax.set_axis_off() | |
my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion) | |
draw_tree = buchheim(my_tree) | |
# important to make sure we're still | |
# inside the axis after drawing the box | |
# this makes sense because the width of a box | |
# is about the same as the distance between boxes | |
max_x, max_y = draw_tree.max_extents() + 1 | |
ax_width = ax.get_window_extent().width | |
ax_height = ax.get_window_extent().height | |
scale_x = ax_width / max_x | |
scale_y = ax_height / max_y | |
self.recurse(draw_tree, decision_tree.tree_, ax, max_x, max_y) | |
anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)] | |
# update sizes of all bboxes | |
renderer = ax.figure.canvas.get_renderer() | |
for ann in anns: | |
ann.update_bbox_position_size(renderer) | |
if self.fontsize is None: | |
# get figure to data transform | |
# adjust fontsize to avoid overlap | |
# get max box width and height | |
extents = [ann.get_bbox_patch().get_window_extent() for ann in anns] | |
max_width = max([extent.width for extent in extents]) | |
max_height = max([extent.height for extent in extents]) | |
# width should be around scale_x in axis coordinates | |
size = anns[0].get_fontsize() * min( | |
scale_x / max_width, scale_y / max_height | |
) | |
for ann in anns: | |
ann.set_fontsize(size) | |
return anns | |
def recurse(self, node, tree, ax, max_x, max_y, depth=0): | |
import matplotlib.pyplot as plt | |
kwargs = dict( | |
bbox=self.bbox_args.copy(), | |
ha="center", | |
va="center", | |
zorder=100 - 10 * depth, | |
xycoords="axes fraction", | |
arrowprops=self.arrow_args.copy(), | |
) | |
kwargs["arrowprops"]["edgecolor"] = plt.rcParams["text.color"] | |
if self.fontsize is not None: | |
kwargs["fontsize"] = self.fontsize | |
# offset things by .5 to center them in plot | |
xy = ((node.x + 0.5) / max_x, (max_y - node.y - 0.5) / max_y) | |
if self.max_depth is None or depth <= self.max_depth: | |
if self.filled: | |
kwargs["bbox"]["fc"] = self.get_fill_color(tree, node.tree.node_id) | |
else: | |
kwargs["bbox"]["fc"] = ax.get_facecolor() | |
if node.parent is None: | |
# root | |
ax.annotate(node.tree.label, xy, **kwargs) | |
else: | |
xy_parent = ( | |
(node.parent.x + 0.5) / max_x, | |
(max_y - node.parent.y - 0.5) / max_y, | |
) | |
ax.annotate(node.tree.label, xy_parent, xy, **kwargs) | |
for child in node.children: | |
self.recurse(child, tree, ax, max_x, max_y, depth=depth + 1) | |
else: | |
xy_parent = ( | |
(node.parent.x + 0.5) / max_x, | |
(max_y - node.parent.y - 0.5) / max_y, | |
) | |
kwargs["bbox"]["fc"] = "grey" | |
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs) | |
def export_graphviz( | |
decision_tree, | |
out_file=None, | |
*, | |
max_depth=None, | |
feature_names=None, | |
class_names=None, | |
label="all", | |
filled=False, | |
leaves_parallel=False, | |
impurity=True, | |
node_ids=False, | |
proportion=False, | |
rotate=False, | |
rounded=False, | |
special_characters=False, | |
precision=3, | |
fontname="helvetica", | |
): | |
"""Export a decision tree in DOT format. | |
This function generates a GraphViz representation of the decision tree, | |
which is then written into `out_file`. Once exported, graphical renderings | |
can be generated using, for example:: | |
$ dot -Tps tree.dot -o tree.ps (PostScript format) | |
$ dot -Tpng tree.dot -o tree.png (PNG format) | |
The sample counts that are shown are weighted with any sample_weights that | |
might be present. | |
Read more in the :ref:`User Guide <tree>`. | |
Parameters | |
---------- | |
decision_tree : object | |
The decision tree estimator to be exported to GraphViz. | |
out_file : object or str, default=None | |
Handle or name of the output file. If ``None``, the result is | |
returned as a string. | |
.. versionchanged:: 0.20 | |
Default of out_file changed from "tree.dot" to None. | |
max_depth : int, default=None | |
The maximum depth of the representation. If None, the tree is fully | |
generated. | |
feature_names : array-like of shape (n_features,), default=None | |
An array containing the feature names. | |
If None, generic names will be used ("x[0]", "x[1]", ...). | |
class_names : array-like of shape (n_classes,) or bool, default=None | |
Names of each of the target classes in ascending numerical order. | |
Only relevant for classification and not supported for multi-output. | |
If ``True``, shows a symbolic representation of the class name. | |
label : {'all', 'root', 'none'}, default='all' | |
Whether to show informative labels for impurity, etc. | |
Options include 'all' to show at every node, 'root' to show only at | |
the top root node, or 'none' to not show at any node. | |
filled : bool, default=False | |
When set to ``True``, paint nodes to indicate majority class for | |
classification, extremity of values for regression, or purity of node | |
for multi-output. | |
leaves_parallel : bool, default=False | |
When set to ``True``, draw all leaf nodes at the bottom of the tree. | |
impurity : bool, default=True | |
When set to ``True``, show the impurity at each node. | |
node_ids : bool, default=False | |
When set to ``True``, show the ID number on each node. | |
proportion : bool, default=False | |
When set to ``True``, change the display of 'values' and/or 'samples' | |
to be proportions and percentages respectively. | |
rotate : bool, default=False | |
When set to ``True``, orient tree left to right rather than top-down. | |
rounded : bool, default=False | |
When set to ``True``, draw node boxes with rounded corners. | |
special_characters : bool, default=False | |
When set to ``False``, ignore special characters for PostScript | |
compatibility. | |
precision : int, default=3 | |
Number of digits of precision for floating point in the values of | |
impurity, threshold and value attributes of each node. | |
fontname : str, default='helvetica' | |
Name of font used to render text. | |
Returns | |
------- | |
dot_data : str | |
String representation of the input tree in GraphViz dot format. | |
Only returned if ``out_file`` is None. | |
.. versionadded:: 0.18 | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_iris | |
>>> from sklearn import tree | |
>>> clf = tree.DecisionTreeClassifier() | |
>>> iris = load_iris() | |
>>> clf = clf.fit(iris.data, iris.target) | |
>>> tree.export_graphviz(clf) | |
'digraph Tree {... | |
""" | |
if feature_names is not None: | |
feature_names = check_array( | |
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0 | |
) | |
if class_names is not None and not isinstance(class_names, bool): | |
class_names = check_array( | |
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0 | |
) | |
check_is_fitted(decision_tree) | |
own_file = False | |
return_string = False | |
try: | |
if isinstance(out_file, str): | |
out_file = open(out_file, "w", encoding="utf-8") | |
own_file = True | |
if out_file is None: | |
return_string = True | |
out_file = StringIO() | |
exporter = _DOTTreeExporter( | |
out_file=out_file, | |
max_depth=max_depth, | |
feature_names=feature_names, | |
class_names=class_names, | |
label=label, | |
filled=filled, | |
leaves_parallel=leaves_parallel, | |
impurity=impurity, | |
node_ids=node_ids, | |
proportion=proportion, | |
rotate=rotate, | |
rounded=rounded, | |
special_characters=special_characters, | |
precision=precision, | |
fontname=fontname, | |
) | |
exporter.export(decision_tree) | |
if return_string: | |
return exporter.out_file.getvalue() | |
finally: | |
if own_file: | |
out_file.close() | |
def _compute_depth(tree, node): | |
""" | |
Returns the depth of the subtree rooted in node. | |
""" | |
def compute_depth_( | |
current_node, current_depth, children_left, children_right, depths | |
): | |
depths += [current_depth] | |
left = children_left[current_node] | |
right = children_right[current_node] | |
if left != -1 and right != -1: | |
compute_depth_( | |
left, current_depth + 1, children_left, children_right, depths | |
) | |
compute_depth_( | |
right, current_depth + 1, children_left, children_right, depths | |
) | |
depths = [] | |
compute_depth_(node, 1, tree.children_left, tree.children_right, depths) | |
return max(depths) | |
def export_text( | |
decision_tree, | |
*, | |
feature_names=None, | |
class_names=None, | |
max_depth=10, | |
spacing=3, | |
decimals=2, | |
show_weights=False, | |
): | |
"""Build a text report showing the rules of a decision tree. | |
Note that backwards compatibility may not be supported. | |
Parameters | |
---------- | |
decision_tree : object | |
The decision tree estimator to be exported. | |
It can be an instance of | |
DecisionTreeClassifier or DecisionTreeRegressor. | |
feature_names : array-like of shape (n_features,), default=None | |
An array containing the feature names. | |
If None generic names will be used ("feature_0", "feature_1", ...). | |
class_names : array-like of shape (n_classes,), default=None | |
Names of each of the target classes in ascending numerical order. | |
Only relevant for classification and not supported for multi-output. | |
- if `None`, the class names are delegated to `decision_tree.classes_`; | |
- otherwise, `class_names` will be used as class names instead of | |
`decision_tree.classes_`. The length of `class_names` must match | |
the length of `decision_tree.classes_`. | |
.. versionadded:: 1.3 | |
max_depth : int, default=10 | |
Only the first max_depth levels of the tree are exported. | |
Truncated branches will be marked with "...". | |
spacing : int, default=3 | |
Number of spaces between edges. The higher it is, the wider the result. | |
decimals : int, default=2 | |
Number of decimal digits to display. | |
show_weights : bool, default=False | |
If true the classification weights will be exported on each leaf. | |
The classification weights are the number of samples each class. | |
Returns | |
------- | |
report : str | |
Text summary of all the rules in the decision tree. | |
Examples | |
-------- | |
>>> from sklearn.datasets import load_iris | |
>>> from sklearn.tree import DecisionTreeClassifier | |
>>> from sklearn.tree import export_text | |
>>> iris = load_iris() | |
>>> X = iris['data'] | |
>>> y = iris['target'] | |
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2) | |
>>> decision_tree = decision_tree.fit(X, y) | |
>>> r = export_text(decision_tree, feature_names=iris['feature_names']) | |
>>> print(r) | |
|--- petal width (cm) <= 0.80 | |
| |--- class: 0 | |
|--- petal width (cm) > 0.80 | |
| |--- petal width (cm) <= 1.75 | |
| | |--- class: 1 | |
| |--- petal width (cm) > 1.75 | |
| | |--- class: 2 | |
""" | |
if feature_names is not None: | |
feature_names = check_array( | |
feature_names, ensure_2d=False, dtype=None, ensure_min_samples=0 | |
) | |
if class_names is not None: | |
class_names = check_array( | |
class_names, ensure_2d=False, dtype=None, ensure_min_samples=0 | |
) | |
check_is_fitted(decision_tree) | |
tree_ = decision_tree.tree_ | |
if is_classifier(decision_tree): | |
if class_names is None: | |
class_names = decision_tree.classes_ | |
elif len(class_names) != len(decision_tree.classes_): | |
raise ValueError( | |
"When `class_names` is an array, it should contain as" | |
" many items as `decision_tree.classes_`. Got" | |
f" {len(class_names)} while the tree was fitted with" | |
f" {len(decision_tree.classes_)} classes." | |
) | |
right_child_fmt = "{} {} <= {}\n" | |
left_child_fmt = "{} {} > {}\n" | |
truncation_fmt = "{} {}\n" | |
if feature_names is not None and len(feature_names) != tree_.n_features: | |
raise ValueError( | |
"feature_names must contain %d elements, got %d" | |
% (tree_.n_features, len(feature_names)) | |
) | |
if isinstance(decision_tree, DecisionTreeClassifier): | |
value_fmt = "{}{} weights: {}\n" | |
if not show_weights: | |
value_fmt = "{}{}{}\n" | |
else: | |
value_fmt = "{}{} value: {}\n" | |
if feature_names is not None: | |
feature_names_ = [ | |
feature_names[i] if i != _tree.TREE_UNDEFINED else None | |
for i in tree_.feature | |
] | |
else: | |
feature_names_ = ["feature_{}".format(i) for i in tree_.feature] | |
export_text.report = "" | |
def _add_leaf(value, weighted_n_node_samples, class_name, indent): | |
val = "" | |
if isinstance(decision_tree, DecisionTreeClassifier): | |
if show_weights: | |
val = [ | |
"{1:.{0}f}, ".format(decimals, v * weighted_n_node_samples) | |
for v in value | |
] | |
val = "[" + "".join(val)[:-2] + "]" | |
weighted_n_node_samples | |
val += " class: " + str(class_name) | |
else: | |
val = ["{1:.{0}f}, ".format(decimals, v) for v in value] | |
val = "[" + "".join(val)[:-2] + "]" | |
export_text.report += value_fmt.format(indent, "", val) | |
def print_tree_recurse(node, depth): | |
indent = ("|" + (" " * spacing)) * depth | |
indent = indent[:-spacing] + "-" * spacing | |
value = None | |
if tree_.n_outputs == 1: | |
value = tree_.value[node][0] | |
else: | |
value = tree_.value[node].T[0] | |
class_name = np.argmax(value) | |
if tree_.n_classes[0] != 1 and tree_.n_outputs == 1: | |
class_name = class_names[class_name] | |
weighted_n_node_samples = tree_.weighted_n_node_samples[node] | |
if depth <= max_depth + 1: | |
info_fmt = "" | |
info_fmt_left = info_fmt | |
info_fmt_right = info_fmt | |
if tree_.feature[node] != _tree.TREE_UNDEFINED: | |
name = feature_names_[node] | |
threshold = tree_.threshold[node] | |
threshold = "{1:.{0}f}".format(decimals, threshold) | |
export_text.report += right_child_fmt.format(indent, name, threshold) | |
export_text.report += info_fmt_left | |
print_tree_recurse(tree_.children_left[node], depth + 1) | |
export_text.report += left_child_fmt.format(indent, name, threshold) | |
export_text.report += info_fmt_right | |
print_tree_recurse(tree_.children_right[node], depth + 1) | |
else: # leaf | |
_add_leaf(value, weighted_n_node_samples, class_name, indent) | |
else: | |
subtree_depth = _compute_depth(tree_, node) | |
if subtree_depth == 1: | |
_add_leaf(value, weighted_n_node_samples, class_name, indent) | |
else: | |
trunc_report = "truncated branch of depth %d" % subtree_depth | |
export_text.report += truncation_fmt.format(indent, trunc_report) | |
print_tree_recurse(0, 1) | |
return export_text.report | |