peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/hybrid_engine.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from deepspeed.inference.config import DeepSpeedInferenceConfig | |
from deepspeed.module_inject.replace_policy import replace_policies | |
from deepspeed.module_inject.utils import policy_to_ds_container | |
from .engine import DeepSpeedEngine | |
from .utils import TLinear, get_inactive_params | |
from deepspeed.runtime.zero import GatheredParameters | |
import time | |
import gc | |
import math | |
from deepspeed import comm as dist | |
from deepspeed.accelerator import get_accelerator | |
from torch import nn | |
from deepspeed.utils import logger | |
from deepspeed.ops.op_builder import InferenceBuilder | |
from deepspeed.module_inject.layers import LinearLayer, Normalize, EmbeddingLayer, OPTEmbedding | |
try: | |
import transformers | |
OPTLearnedPositionalEmbedding = transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding | |
except: | |
OPTLearnedPositionalEmbedding = None | |
inference_cuda_module = None | |
class DeepSpeedHybridEngine(DeepSpeedEngine): | |
r"""DeepSpeed engine for training and inference.""" | |
inference_mp_group = None | |
def __init__(self, args, model, **kwargs): | |
super().__init__(args, model, **kwargs) | |
# synch seed between all GPUs | |
_rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name()) | |
dist.broadcast(_rng_state, 0) | |
get_accelerator().set_rng_state(_rng_state.cpu()) | |
self.Z3_enabled = (self._config.zero_config.stage == 3) | |
self.gather_all_layers = self._config.hybrid_engine.pin_parameters | |
# inference containers / fwds | |
self._inference_containers = [] | |
self._orig_modules = [] | |
self._orig_fwds = [] | |
self.create_inference_module() | |
# Performance stats | |
self._t_start = None | |
self._total_latency = 0 | |
self._iters = 0 | |
self._training_start_time = None | |
self._generate_latency = 0 | |
self._training_latency = 0 | |
self._total_batch_size = None | |
self._gather_latency = 0 | |
global inference_cuda_module | |
if inference_cuda_module is None: | |
builder = InferenceBuilder() | |
inference_cuda_module = builder.load() | |
self.is_lora_fused = False | |
def convert_to_linear_transposed(self, model): | |
def _replace_linear_layer(r_module, parent_type=None, prev_type=None): | |
for name, child in r_module.named_children(): | |
if child.__class__ in [torch.nn.Linear] and \ | |
(parent_type is torch.nn.ModuleList or prev_type is torch.nn.ModuleList): | |
setattr(r_module, name, TLinear(child, name)) | |
else: | |
_replace_linear_layer(child, type(r_module), prev_type=parent_type) | |
return r_module | |
_replace_linear_layer(model) | |
def new_inference_container(self, orig_layer, policy_cls, layer_id): | |
policy = policy_cls(orig_layer, inference=True) | |
if self._config.fp16_enabled: | |
inference_dtype = torch.float16 | |
elif self._config.bfloat16_enabled: | |
inference_dtype = torch.bfloat16 | |
else: | |
inference_dtype = torch.float32 | |
_container = policy_to_ds_container( | |
policy=policy, | |
config=DeepSpeedInferenceConfig( | |
set_empty_params=True, | |
dtype=inference_dtype, | |
max_out_tokens=self._config.hybrid_engine.max_out_tokens, | |
min_out_tokens=self._config.hybrid_engine.max_out_tokens, | |
transposed_mode=True, | |
), | |
model_config=self.module.config if hasattr(self.module, 'config') else None, | |
layer_id=layer_id, | |
child=orig_layer) | |
if self.mpu is not None: | |
if hasattr(self.mpu, 'get_model_parallel_world_size'): | |
_container.set_tensor_parallel_config(self.mpu.get_model_parallel_world_size(), | |
self.mpu.get_model_parallel_group()) | |
else: | |
_container.set_tensor_parallel_config(self.mpu.get_tensor_model_parallel_world_size(), | |
self.mpu.get_tensor_model_parallel_group()) | |
else: | |
_container.set_tensor_parallel_config(self._config.hybrid_engine.inference_tp_size, self.mp_group) | |
_container.initialize_tensors(enable_training=True) | |
_container.create_ds_model_config() | |
_container.create_module() | |
_container.set_params_wo_copy(Z3_enabled=self.Z3_enabled) | |
return _container | |
def populate_all_inference_policies(self): | |
self.inference_policies = {} | |
for plcy in replace_policies: | |
_ = plcy(None) | |
if isinstance(plcy._orig_layer_class, list): | |
for orig_layer_class in plcy._orig_layer_class: | |
self.inference_policies.update({orig_layer_class: (self.new_inference_container, plcy)}) | |
elif plcy._orig_layer_class is not None: | |
self.inference_policies.update({plcy._orig_layer_class: (self.new_inference_container, plcy)}) | |
self.inference_policies.update({ | |
nn.Linear: (LinearLayer, ), | |
nn.Embedding: (EmbeddingLayer, ), | |
nn.LayerNorm: (Normalize, ), | |
OPTLearnedPositionalEmbedding: (OPTEmbedding, ) | |
}) | |
def _fuse_lora_layer(self, layer_id): | |
self._inference_containers[layer_id].fuse_lora() | |
def fuse_lora_weight(self): | |
for layer_id in range(len(self.layer_params)): | |
self._fuse_lora_layer(layer_id) | |
def _unfuse_lora_layer(self, layer_id): | |
self._inference_containers[layer_id].unfuse_lora() | |
def unfuse_lora_weight(self): | |
for layer_id in range(len(self.layer_params)): | |
self._unfuse_lora_layer(layer_id) | |
def unfuse_lora_weight_non_pinned(self): | |
for layer_id in range(len(self.layer_params)): | |
non_active_params = get_inactive_params(self.layer_params[layer_id]) | |
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id]) | |
non_active_params.extend(non_active_lora_params) | |
with GatheredParameters(non_active_params): | |
self._unfuse_lora_layer(layer_id) | |
def retake_inference_cache(self): | |
if self._config.hybrid_engine.release_inference_cache: | |
retake_success = inference_cuda_module.retake_workspace() | |
if not retake_success: | |
logger.warning("Unable to acquire workspace on first attempt, emptying cache and retrying.") | |
gc.collect() | |
get_accelerator().empty_cache() | |
retake_success = inference_cuda_module.retake_workspace() | |
if not retake_success: | |
raise RuntimeError("Unable to retake inference workspace.") | |
def generate(self, *inputs, **kwargs): | |
if self._total_batch_size is None: | |
bsz = inputs[0].shape[0] if len(inputs) > 0 else \ | |
kwargs['input_ids'].shape[0] | |
self._total_batch_size = bsz * dist.get_world_size() | |
self._t0 = time.time() | |
if self.Z3_enabled and self.gather_all_layers: | |
if self._config.hybrid_engine.inference_tp_size > 1: | |
non_tp_params = [] | |
for other_layer in self._other_layers: | |
non_tp_params.extend(list(other_layer.parameters())) | |
partition_size = self._config.hybrid_engine.tp_gather_partition_size | |
layer_groups = math.ceil(len(self.layer_params) / partition_size) | |
for lg in range(layer_groups): | |
non_active_params = [] | |
non_active_lora_params = [] | |
for layer_id in range(lg * partition_size, min(len(self.layer_params), (lg + 1) * partition_size), | |
1): | |
non_tp_params.extend(self.layer_params[layer_id][:4]) | |
non_active_params.extend(get_inactive_params(self.layer_params[layer_id])) | |
non_active_params.extend(get_inactive_params(self.layer_lora_params[layer_id])) | |
with GatheredParameters(non_active_params): | |
for layer_id in range(lg * partition_size, | |
min(len(self.layer_params), (lg + 1) * partition_size), 1): | |
if len(self.all_lora_params) > 0: | |
self._fuse_lora_layer(layer_id) | |
if self.mpu is not None: | |
self._inference_containers[layer_id].apply_tensor_parallelism(self.mp_replace, | |
reversed_dim=True) | |
# TODO(cmikeh2) Evaluate if this can be deferred when release_inference_cache | |
# is enabled. | |
gc.collect() | |
get_accelerator().empty_cache() | |
self._gather_latency = time.time() - self._t0 | |
input_shape = inputs[0].shape if len(inputs) > 0 else \ | |
kwargs['input_ids'].shape | |
output = torch.zeros( | |
(input_shape[0] * self._config.hybrid_engine.inference_tp_size, ) + input_shape[1:], | |
dtype=inputs[0].dtype if len(inputs) > 0 else kwargs['input_ids'].dtype, | |
device=inputs[0].device if len(inputs) > 0 else kwargs['input_ids'].device) | |
input_cont = inputs[0].contiguous() if len(inputs) > 0 else kwargs['input_ids'].contiguous() | |
dist.all_gather_into_tensor(output, input_cont, group=self.mp_group) | |
if len(inputs) > 0: | |
inputs = (output, *inputs[1:]) | |
else: | |
kwargs['input_ids'] = output | |
self.retake_inference_cache() | |
non_active_params = get_inactive_params(non_tp_params) | |
with GatheredParameters(non_active_params): | |
generate_ret_vals = self._generate(*inputs, **kwargs) | |
for layer_id in range(len(self.layer_params)): | |
self._inference_containers[layer_id].release_memory() | |
rank = dist.get_rank(group=self.mp_group) | |
generate_ret_vals = generate_ret_vals[input_shape[0] * rank:input_shape[0] * (rank + 1)] | |
else: | |
non_active_layers = get_inactive_params(self.all_layers_params) | |
non_active_lora_params = get_inactive_params(self.all_lora_params) | |
non_active_layers.extend(non_active_lora_params) | |
with GatheredParameters(non_active_layers): | |
self._gather_latency = time.time() - self._t0 | |
if len(self.all_lora_params) > 0: | |
self.fuse_lora_weight() | |
self.retake_inference_cache() | |
generate_ret_vals = self._generate(*inputs, **kwargs) | |
if len(self.all_lora_params) > 0: | |
self.unfuse_lora_weight() | |
else: | |
if len(self.all_lora_params) > 0 and (not self.Z3_enabled): | |
self.fuse_lora_weight() | |
self.retake_inference_cache() | |
generate_ret_vals = self._generate(*inputs, **kwargs) | |
if len(self.all_lora_params) > 0: | |
if (not self.Z3_enabled): | |
self.unfuse_lora_weight() | |
else: | |
self.unfuse_lora_weight_non_pinned() | |
self.is_lora_fused = False | |
if self._config.hybrid_engine.release_inference_cache: | |
inference_cuda_module.release_workspace() | |
gc.collect() | |
get_accelerator().empty_cache() | |
self._generate_latency = time.time() - self._t0 - self._gather_latency | |
return generate_ret_vals | |
def create_inference_containers(self, module, layer_id=0): | |
for name, child in module.named_children(): | |
if child.__class__ in self.inference_policies: | |
if self.inference_policies[child.__class__][0] == self.new_inference_container: | |
self._inference_containers.append(self.inference_policies[child.__class__][0]( | |
child, self.inference_policies[child.__class__][-1], layer_id)) | |
self._orig_modules.append(child) | |
self._orig_fwds.append(child.forward) | |
self.layer_params.append(self._inference_containers[layer_id].get_all_params()) | |
self.lora_params.append(self._inference_containers[layer_id].get_lora_params()) | |
self.layer_lora_params.append([]) | |
for lora_param in self.lora_params[layer_id]: | |
self.layer_lora_params[layer_id].extend(lora_param[:-1]) | |
self.all_lora_params.extend(lora_param[:-1]) | |
layer_id += 1 | |
else: | |
self._other_layers.append(self.inference_policies[child.__class__][0]( | |
weight=child.weight, bias=child.bias if hasattr(child, 'bias') else None)) | |
self._orig_modules_others.append(child) | |
self._orig_fwds_others.append(child.forward) | |
else: | |
self.create_inference_containers(child, layer_id=layer_id) | |
def create_inference_module(self): | |
self.layer_params = [] | |
self.layer_lora_params = [] | |
self.lora_params = [] | |
self.all_lora_params = [] | |
self._other_layers = [] | |
self._orig_modules_others = [] | |
self._orig_fwds_others = [] | |
if self._config.hybrid_engine.inference_tp_size > 1: | |
if self.mpu is None: | |
global_rank = dist.get_rank() | |
world_size = dist.get_world_size() | |
mp_group_id = global_rank // self._config.hybrid_engine.inference_tp_size | |
num_mp_groups = world_size // self._config.hybrid_engine.inference_tp_size | |
for mp_group_id in range(num_mp_groups): | |
ranks = list( | |
range(mp_group_id * self._config.hybrid_engine.inference_tp_size, \ | |
(mp_group_id + 1) * self._config.hybrid_engine.inference_tp_size, \ | |
1) | |
) | |
mp_group = dist.new_group(ranks) | |
if global_rank in ranks: | |
# mp_group is used for broader collective | |
self.mp_group = mp_group | |
# mp_replace is used for container tensor slicing | |
from deepspeed.module_inject import ReplaceWithTensorSlicing | |
self.mp_replace = ReplaceWithTensorSlicing( | |
mp_group=self.mp_group, | |
mp_size=self._config.hybrid_engine.inference_tp_size, | |
out_dim=0, | |
in_dim=1) | |
else: | |
self.mp_group = self.mpu.get_model_parallel_group() if hasattr(self.mpu, 'get_model_parallel_group') else \ | |
self.mpu.get_tensor_model_parallel_group() | |
from deepspeed.module_inject import ReplaceWithTensorSlicing | |
self.mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group, | |
mp_size=self._config.hybrid_engine.inference_tp_size, | |
out_dim=0, | |
in_dim=1) | |
else: | |
self.mp_group = None | |
self.mp_replace = None | |
self.populate_all_inference_policies() | |
self.all_layers_params = list(self.module.parameters()) | |
self.create_inference_containers(self.module) | |
if len(self._inference_containers) > 0: | |
self._generate = self.module.generate | |
self.module.generate = self.generate | |
self._t0 = time.time() | |
def _zero3_forward(self, layer_id): | |
def run_forward(*inputs, **kwargs): | |
non_active_params = get_inactive_params(self.layer_params[layer_id]) | |
non_active_lora_params = get_inactive_params(self.layer_lora_params[layer_id]) | |
non_active_params.extend(non_active_lora_params) | |
with GatheredParameters(non_active_params): | |
if len(self.all_lora_params) > 0: | |
# Use the is_lora_fused flag to prevent multiple fusion in Z3 with non-pinned memory | |
if not self.is_lora_fused: | |
self._fuse_lora_layer(layer_id) | |
# Set the is_lora_fused to true when reaching the last layer | |
if layer_id == len(self.layer_params) - 1: | |
self.is_lora_fused = True | |
return self._inference_containers[layer_id].module.forward(*inputs, **kwargs) | |
return run_forward | |
def eval(self): | |
if self._t_start is not None: | |
latency = time.time() - self._t_start | |
self._total_latency = self._total_latency + latency | |
self._iters = self._iters + 1 | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
if self._total_batch_size is not None: | |
cur_samples_p_sec = f'|CurSamplesPerSec={(1 / latency * self._total_batch_size):.2f} ' | |
avg_samples_p_sec = f'|AvgSamplesPerSec={(1 / (self._total_latency / self._iters) * self._total_batch_size):.2f}' | |
else: | |
cur_samples_p_sec = '' | |
avg_samples_p_sec = '' | |
others = latency - (self._generate_latency + self._training_latency) | |
print(f'|E2E latency={(latency):.2f}s ' + \ | |
f'|Gather latency={self._gather_latency:.2f}s ({(self._gather_latency / latency * 100):.2f}%) ' | |
f'|Generate time={(self._generate_latency):.2f}s ({(self._generate_latency / latency * 100):.2f}%) ' + \ | |
f'|Training time={(self._training_latency):.2f}s ({(self._training_latency / latency * 100):.2f}%) ' + \ | |
f'|Others={others:.2f} ({(others / latency * 100):.2f}%)' + \ | |
cur_samples_p_sec + \ | |
avg_samples_p_sec) | |
self._t_start = time.time() | |
self._training_latency = 0 | |
super().eval() | |
if len(self._inference_containers) > 0: | |
for i, (orig_module, inference_container) in enumerate(zip(self._orig_modules, | |
self._inference_containers)): | |
if self.Z3_enabled and not self.gather_all_layers: | |
orig_module.forward = self._zero3_forward(i) | |
else: | |
orig_module.forward = inference_container.module.forward | |
inference_container.transform_for_inference() | |
if not self.Z3_enabled or self.gather_all_layers: | |
for orig_module, inference_layer in zip(self._orig_modules_others, self._other_layers): | |
orig_module.forward = inference_layer.forward | |
if self.Z3_enabled: | |
gc.collect() | |
get_accelerator().empty_cache() | |
if self._t_start is None: | |
self._t_start = time.time() | |
def train(self, mode=True): | |
if mode and len(self._orig_modules) > 0: | |
for inference_container, orig_module, orig_fwd in zip(self._inference_containers, self._orig_modules, | |
self._orig_fwds): | |
inference_container.transform_for_training() | |
orig_module.forward = orig_fwd | |
for orig_module, orig_fwd in zip(self._orig_modules_others, self._orig_fwds_others): | |
orig_module.forward = orig_fwd | |
super().train(mode) | |
if mode: | |
self._training_start_time = time.time() | |
def step(self, lr_kwargs=None): | |
super().step(lr_kwargs=lr_kwargs) | |
if len(self._inference_containers) > 0: | |
if not self.Z3_enabled: | |
for inference_container in self._inference_containers: | |
inference_container.reset_params() | |
if self._training_start_time is not None: | |
self._training_latency += (time.time() - self._training_start_time) | |
self._training_start_time = time.time() | |