peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/mics_utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
from dataclasses import dataclass | |
from typing import List | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from deepspeed import comm as dist | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.utils import logger | |
def _log_rank0(msg): | |
if dist.get_rank() == 0: | |
logger.info(msg) | |
def scale_tensors(tensors: List[Tensor], scale: int): | |
for t in tensors: | |
t.div_(scale) | |
class MiCS_CommGroups: | |
"""""" | |
param_shard_group = None | |
param_shard_size = -1 | |
param_shard_rank = -1 | |
param_repli_group = None | |
param_repli_size = -1 | |
param_repli_rank = -1 | |
param_intra_node_group = None | |
param_inter_node_shard_group = None | |
def create_mics_comm_groups( | |
shard_size, | |
dp_group, | |
hierarchical_allgather=False, | |
mpu=None, | |
): | |
""" | |
create shard-group, replicate-group from config_file | |
TODO: consider broadcast the config from rank0 | |
Returns: | |
MiCS_CommGroups | |
""" | |
# env var for debugging purpose | |
ndevices_per_node = int(os.environ.get("NDEV_PER_NODE", get_accelerator().device_count())) | |
_log_rank0(f'creating MiCS communication groups with per node device size {ndevices_per_node}') | |
groups = MiCS_CommGroups() | |
if mpu is not None: | |
assert dp_group == mpu.get_data_parallel_group() | |
# full size of the world | |
world_size = dist.get_world_size() | |
# global rank | |
global_rank = dist.get_rank() | |
config = _generate_mics_config(world_size, ndevices_per_node, shard_size, 1) | |
ranks_of_shard_group = config['shard_groups'] | |
ranks_of_repli_group = config['replicate_groups'] | |
if len(ranks_of_repli_group) == 0: | |
assert len(ranks_of_shard_group) == 1, "replicate groups are empty only for single shard group" | |
for r in ranks_of_shard_group[0]: | |
ranks_of_repli_group.append([r]) | |
# for simplicity | |
assert _sizes_all_same(ranks_of_repli_group), "replicate groups must have the same size" | |
assert _sizes_all_same(ranks_of_shard_group), "shard groups must have the same size" | |
assert sum([len(g) for g in ranks_of_shard_group]) == dist.get_world_size(), "all sharded ranks " | |
if len(ranks_of_shard_group) > 1: # if only shard on one group then no need for replicate groups | |
assert len(ranks_of_shard_group) == len( | |
ranks_of_repli_group[0]), "number of shard groups must equal to the size of each replicate group" | |
global_rank = dist.get_rank() | |
# create shard groups | |
for shard_ranks in ranks_of_shard_group: | |
_group = dist.new_group(shard_ranks) | |
if global_rank in shard_ranks: | |
groups.param_shard_group = _group | |
groups.param_shard_size = len(shard_ranks) | |
groups.param_shard_rank = dist.get_rank(_group) | |
logger.info(f'rank {global_rank}, shard group' | |
f' {groups.param_shard_rank}/{dist.get_world_size(group=_group)}') | |
# create replicate groups | |
for repli_ranks in ranks_of_repli_group: | |
if len(repli_ranks) > 1: | |
_group = dist.new_group(repli_ranks) | |
if global_rank in repli_ranks: | |
groups.param_repli_group = _group | |
groups.param_repli_size = len(repli_ranks) | |
groups.param_repli_rank = dist.get_rank(group=_group) | |
logger.info(f'rank {global_rank} ' | |
f'replicate group {groups.param_repli_rank}/{dist.get_world_size(group=_group)}') | |
else: | |
groups.param_repli_group = None | |
groups.param_repli_size = 1 | |
groups.param_repli_rank = 0 | |
logger.info(f'rank {global_rank} replicate group 0/1') | |
# assign shard group size as world size | |
assert groups.param_shard_size == len(ranks_of_shard_group[0]) | |
if hierarchical_allgather: | |
# create hierarchy inter-node, intra-node groups | |
# n_span_nodes = config['shard_span'] | |
n_span_nodes = config['span_nodes'] | |
assert n_span_nodes > 1, "sharding spans on single node, no need for hierarchy allgather" | |
assert len(ranks_of_shard_group[0]) % n_span_nodes == 0 | |
n_gpu_per_node = len(ranks_of_shard_group[0]) // n_span_nodes | |
intra_node_ranks_group = [] | |
inter_node_ranks_group = [] | |
for shard_group in ranks_of_shard_group: | |
_intra_node_ranks = [] | |
for i in range(0, len(shard_group), n_gpu_per_node): | |
_intra_node_ranks.append(shard_group[i:i + n_gpu_per_node]) | |
_inter_node_ranks = [] | |
for i in range(n_gpu_per_node): | |
_ranks = [_g[i] for _g in _intra_node_ranks] | |
_inter_node_ranks.append(_ranks) | |
intra_node_ranks_group.append(_intra_node_ranks) | |
inter_node_ranks_group.append(_inter_node_ranks) | |
_log_rank0(f"create for hierarchy all-gather groups: intra nodes {intra_node_ranks_group}") | |
_log_rank0(f"create for hierarchy all-gather groups: inter nodes {inter_node_ranks_group}") | |
# create communicators | |
for shard_group in intra_node_ranks_group: | |
for intra_node_ranks in shard_group: | |
_group = dist.new_group(intra_node_ranks) | |
if global_rank in intra_node_ranks: | |
groups.param_intra_node_group = _group | |
_log_rank0(f'create group for intra node ranks {intra_node_ranks}') | |
for shard_group in inter_node_ranks_group: | |
for inter_node_ranks in shard_group: | |
_group = dist.new_group(inter_node_ranks) | |
if global_rank in inter_node_ranks: | |
groups.param_inter_node_shard_group = _group | |
_log_rank0(f'create group for inter node ranks {inter_node_ranks}') | |
return groups | |
def _generate_mics_config(world_size, ndev_per_node, shard_size, pp_size=1): | |
"""Generating the configuration for sharding This shard config generation assume | |
that the pipeline stages are partitioned in order, i.e., first ranks | |
hold the stage0, etc. | |
Args: | |
shard_size (int): zero3 data-parallel shard size, FIXME: | |
change the name later | |
pp_size (int): pipeline parallel size, currently, only work with | |
pipeline parallelism + zero | |
""" | |
assert world_size % pp_size == 0 | |
assert (world_size // pp_size) % shard_size == 0, \ | |
f"dp group size is not dividable by dp_shard_size, "\ | |
f" (world_size {world_size}, pp_size {pp_size}, dp_shard_size {shard_size})" | |
config = {} | |
shard_groups = np.arange(world_size).reshape(-1, shard_size) | |
replicate_groups = [] | |
for i in range(shard_size): | |
same_shard_ranks = shard_groups[:, i].tolist() | |
n_ranks = len(same_shard_ranks) | |
replicate_size = n_ranks // pp_size | |
replicate_groups.extend([same_shard_ranks[j:j + replicate_size] for j in range(0, n_ranks, replicate_size)]) | |
config['replicate_groups'] = replicate_groups | |
config['shard_groups'] = shard_groups.tolist() | |
config["span_nodes"] = len(shard_groups[0]) // ndev_per_node | |
return config | |
def _sizes_all_same(groups): | |
"""all groups have same length""" | |
all_same = True | |
for g in groups: | |
if len(g) != len(groups[0]): | |
return False | |
return all_same | |