applied-ai-018's picture
Add files using upload-large-folder tool
9ad9e91 verified
raw
history blame
2.73 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed.runtime.zero.contiguous_memory_allocator import ContiguousMemoryAllocator
def test1():
mem = ContiguousMemoryAllocator(1024, torch.half, 'cpu')
mem.print_allocation(resolution=100)
a1 = mem.allocate_tensor(64).mul_(0.0).add_(1.0)
mem.print_allocation(resolution=100)
mem.release_tensor(a1)
mem.print_allocation(resolution=100)
a2 = mem.allocate_tensor(64).mul_(0.0).add_(2.0)
a3 = mem.allocate_tensor(256).mul_(0.0).add_(3.0)
a4 = mem.allocate_tensor(128).mul_(0.0).add_(4.0)
mem.print_allocation(resolution=100)
mem.release_tensor(a3)
mem.print_allocation(resolution=100)
a5 = mem.allocate_tensor(64).mul_(0.0).add_(5.0)
a6 = mem.allocate_tensor(256).mul_(0.0).add_(6.0)
a7 = mem.allocate_tensor(128).mul_(0.0).add_(7.0)
mem.print_allocation(resolution=100)
a8 = mem.allocate_tensor(256).mul_(0.0).add_(8.0)
a9 = mem.allocate_tensor(128).mul_(0.0).add_(9.0)
mem.print_allocation(resolution=100)
mem.release_tensor(a9)
mem.release_tensor(a6)
mem.release_tensor(a2)
mem.release_tensor(a5)
a10 = mem.allocate_tensor(512).mul_(0.0).add_(10.0)
mem.print_allocation(resolution=100)
#print(f"a4:{a4}")
#print(f"a7:{a7}")
#print(f"a8:{a8}")
#print(f"a10:{a10}")
assert (a4.norm() + a7.norm() + a8.norm() + a10.norm()).item() == 474.50, "Test failed"
def test2():
mem = ContiguousMemoryAllocator(512, torch.half, 'cpu')
a1 = mem.allocate_tensor(64).mul_(0.0).add_(1.0)
a2 = mem.allocate_tensor(64).mul_(0.0).add_(2.0)
a3 = mem.allocate_tensor(64).mul_(0.0).add_(3.0)
a4 = mem.allocate_tensor(64).mul_(0.0).add_(4.0)
a5 = mem.allocate_tensor(64).mul_(0.0).add_(5.0)
a6 = mem.allocate_tensor(64).mul_(0.0).add_(6.0)
a7 = mem.allocate_tensor(64).mul_(0.0).add_(7.0)
a8 = mem.allocate_tensor(64).mul_(0.0).add_(8.0)
mem.release_tensor(a2)
mem.release_tensor(a4)
mem.release_tensor(a6)
mem.release_tensor(a8)
mem.print_allocation(resolution=100)
a9 = mem.allocate_tensor(128).mul_(0.0).add_(9.0)
a10 = mem.allocate_tensor(64).mul_(0.0).add_(10.0)
a11 = mem.allocate_tensor(64).mul_(0.0).add_(11.0)
mem.release_tensor(a1)
mem.release_tensor(a5)
mem.print_allocation(resolution=100)
a12 = mem.allocate_tensor(128).mul_(0.0).add_(12.0)
mem.print_allocation(resolution=100)
print(f"a7:{a7}")
print(f"a9:{a9}")
print(f"a10:{a10}")
print(f"a11:{a11}")
print(f"a12:{a12}")
assert (a7.norm() + a9.norm() + a10.norm() + a11.norm() + a12.norm()) == 460.75, "TestFailed"
test1()
test2()