peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/tiling.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import deepspeed | |
from deepspeed.runtime.utils import partition_uniform as partition | |
def split_tensor_along_last_dim(tensor, partitions, contiguous_split_chunks=False): | |
"""Split a tensor along its last dimension. Adapted from Megatron-LM. | |
Arguments: | |
tensor: input tensor. | |
partitions: list of partition sizes to supply to torch.split | |
contiguous_split_chunks: If True, make each chunk contiguous | |
in memory. | |
""" | |
# Get the size and dimension. | |
last_dim = tensor.dim() - 1 | |
# Split. | |
tensor_list = torch.split(tensor, partitions, dim=last_dim) | |
# Note: torch.split does not create contiguous tensors by default. | |
if contiguous_split_chunks: | |
return tuple(chunk.contiguous() for chunk in tensor_list) | |
return tensor_list | |
class TiledLinear(torch.nn.Module): | |
def __init__(self, | |
in_features, | |
out_features, | |
bias=True, | |
in_splits=1, | |
out_splits=1, | |
input_is_already_split=False, | |
combine_out_splits=True, | |
linear_cls=torch.nn.Linear, | |
init_linear=None, | |
**kwargs): | |
"""A replacement for ``torch.nn.Linear`` that works with ZeRO-3 to reduce | |
memory requirements via tiling. | |
TiledLinear breaks the input and output dimensions of a linear layer | |
into tiles that are processed in sequence. This class enables huge | |
linear layers when combined with ZeRO-3 because inactive tiles can be | |
partitioned and offloaded. | |
.. note:: | |
We recommend using as few tiles as necessary. Tiling | |
significantly reduces memory usage, but can reduce throughput | |
for inexpensive layers. This due to the smaller kernels having | |
less parallelism and lower arithmetic intensity, while | |
introducing more frequent synchronization and communication. | |
Args: | |
in_features (int): See ``torch.nn.Linear`` | |
out_features (int): See ``torch.nn.Linear`` | |
bias (bool, optional): See ``torch.nn.Linear`` | |
in_splits (int, optional): The number of tiles along the input dimension. Defaults to 1. | |
out_splits (int, optional): The number of tiles along the output dimension. Defaults to 1. | |
input_is_already_split (bool, optional): If set to ``True``, assume that the ``input_`` in | |
to ``forward()`` is already split into ``in_splits`` chunks. Defaults to ``False``. | |
combine_out_splits (bool, optional): If set to ``False``, do not combine the ``out_splits`` outputs | |
into a single tensor. Defaults to ``True``. | |
linear_cls (class, optional): The underlying class to build individual tiles. | |
Defaults to ``torch.nn.Linear``. | |
init_linear (``torch.nn.Linear``, optional): If set, copy the parameters of | |
``init_linear``. Useful for debugging. Defaults to ``None``. | |
kwargs (dict, optional): additional keyword arguments to provide to ``linear_cls()``. | |
Raises: | |
RuntimeError: ``in_splits`` must be within the range [1, in_features). | |
RuntimeError: ``out_splits`` must be within the range of [1, out_features). | |
""" | |
super().__init__() | |
if (in_splits < 1) or (in_splits > in_features): | |
raise RuntimeError('in splits must be in range [1, in_features].') | |
if (out_splits < 1) or (out_splits > out_features): | |
raise RuntimeError('out splits must be in range [1, out_features].') | |
# global, not necessarily local | |
self.in_features = in_features | |
self.out_features = out_features | |
self.use_bias = bias | |
self.out_splits = out_splits | |
self.in_splits = in_splits | |
self.input_is_already_split = input_is_already_split | |
self.combine_out_splits = combine_out_splits | |
# Build partition-lists. These are CSR-style splits [0, part0, part1, ..., features] | |
# For example, row_parts[p] gives the start of partition p and row_parts[p+1] | |
# is the exclusive end. | |
self.in_parts = partition(num_items=in_features, num_parts=in_splits) | |
self.out_parts = partition(num_items=out_features, num_parts=out_splits) | |
assert len(self.out_parts) == out_splits + 1 | |
assert len(self.in_parts) == in_splits + 1 | |
assert self.out_parts[0] == 0 | |
assert self.out_parts[out_splits] == out_features | |
assert self.in_parts[in_splits] == in_features | |
self.linears = torch.nn.ModuleList() | |
for out_id in range(out_splits): | |
self.linears.append(torch.nn.ModuleList()) | |
local_out_dim = self.out_parts[out_id + 1] - self.out_parts[out_id] | |
for in_id in range(in_splits): | |
#if input_size is split, we only need one bias | |
local_bias = bias if in_id == (in_splits - 1) else False | |
local_in_dim = self.in_parts[in_id + 1] - self.in_parts[in_id] | |
local = linear_cls(local_in_dim, local_out_dim, bias=local_bias, **kwargs) | |
self.linears[out_id].append(local) | |
# Optionally initialize with a known tensor | |
if init_linear is not None: | |
self.copy_params_from(init_linear) | |
def forward(self, input_): | |
if self.in_splits > 1 and not self.input_is_already_split: | |
input_parts = partition(input_.shape[-1], self.in_splits) | |
split_sizes = [input_parts[p + 1] - input_parts[p] for p in range(self.in_splits)] | |
inputs = self._split_global_input(input_, split_sizes) | |
elif self.in_splits > 1: | |
inputs = input_ | |
assert len( | |
inputs) == self.in_splits, f"Col splits {self.in_splits} does not match input splits {len(inputs)}" | |
else: | |
# no splits | |
inputs = [input_] | |
outputs = [None] * self.out_splits | |
for out_id in range(self.out_splits): | |
for in_id in range(self.in_splits): | |
local_output = self.linears[out_id][in_id](inputs[in_id]) | |
outputs[out_id] = self._reduce_local_output(in_id=in_id, | |
out_id=out_id, | |
current_out=outputs[out_id], | |
new_out=local_output) | |
if self.combine_out_splits: | |
return self._combine_output_splits(outputs) | |
return outputs | |
def _split_global_input(self, input, split_sizes): | |
"""Partition an input tensor along the last dimension, aligned with given splits. | |
Subclasses should override this method to account for new input types. | |
Args: | |
input (List[Tensor]): The tensor to partition along the last dimension. | |
split_sizes (List[int]): The size of each partition. | |
Returns: | |
List[Any]: A list of the chunks of ``input``. | |
""" | |
return split_tensor_along_last_dim(input, split_sizes) | |
def _reduce_local_output(self, in_id, out_id, current_out, new_out): | |
"""Reduce (sum) a new local result into the existing local results. | |
Subclasses should override this method. | |
For a given ``out_id``, this method is called ``in_id-1`` times. The first input | |
split is a simple assignment. | |
Args: | |
in_id (int): The input split that produced ``new_out``. | |
out_id (int): The output split that produced ``new_out``. | |
current_out (Any): The reduced form of all previous ``out_id`` results. | |
new_out (Any): The local result from forward (``in_id``, ``out_id``)e | |
Returns: | |
Any: The combined result of ``current_out`` and ``new_out``. | |
""" | |
if current_out is None: | |
#this clone is necessary to preserve auto grad | |
#there is some issue with inplace update for outputs that are views | |
return new_out.clone() | |
else: | |
return current_out + new_out | |
def _combine_output_splits(self, outputs): | |
"""Join the splits of the output into a single result. | |
Args: | |
outputs (List[Any]): The reduced outputs for each output split. | |
Returns: | |
Any: The combined outputs. | |
""" | |
assert len(outputs) == self.out_splits | |
return torch.cat(outputs, dim=-1) | |
def copy_params_from(self, other): | |
"""Copy the weight and bias data from ``other``. | |
This is especially useful for reproducible initialization and testing. | |
Equivalent to: | |
.. code-block:: python | |
with torch.no_grad(): | |
self.weight.copy_(other.weight) | |
if self.bias is not None: | |
self.bias.copy_(other.bias) | |
.. note:: | |
If ZeRO-3 is enabled, this is a collective operation and the | |
updated parameters of data-parallel rank 0 will be visible on all | |
ranks. See :class:`deepspeed.zero.GatheredParameters` for more | |
information. | |
Args: | |
other (``torch.nn.Linear``): the linear layer to copy from. | |
""" | |
assert hasattr(other, 'weight') | |
assert other.weight.size() == (self.out_features, self.in_features) | |
if self.use_bias: | |
assert hasattr(other, 'bias') | |
assert other.bias is not None | |
assert other.bias.size() == (self.out_features, ) | |
else: | |
assert other.bias is None | |
for row in range(self.out_splits): | |
rstart = self.out_parts[row] | |
rstop = self.out_parts[row + 1] | |
for col in range(self.in_splits): | |
cstart = self.in_parts[col] | |
cstop = self.in_parts[col + 1] | |
local = self.linears[row][col] | |
global_weight = other.weight[rstart:rstop, cstart:cstop] | |
with deepspeed.zero.GatheredParameters(local.weight, modifier_rank=0): | |
local.weight.copy_(global_weight) | |
if local.bias is not None: | |
with deepspeed.zero.GatheredParameters(local.bias, modifier_rank=0): | |
local.bias.data.copy_(other.bias[rstart:rstop].data) | |
class TiledLinearReturnBias(TiledLinear): | |
"""Wrapper for a Linear class that returns its own bias parameter, such as | |
used by Megatron-LM. | |
""" | |
def _reduce_local_output(self, in_id, out_id, current_out, new_out): | |
"""Reduces output tensors, but not the returned bias. """ | |
if current_out is not None: | |
old_tensor, old_bias = current_out | |
else: | |
old_tensor, old_bias = None, None | |
assert isinstance(new_out, tuple) | |
assert len(new_out) == 2 | |
tensor, bias = new_out | |
assert tensor is not None | |
tensor = super()._reduce_local_output(in_id=in_id, out_id=out_id, current_out=old_tensor, new_out=tensor) | |
if bias is None: | |
bias = old_bias | |
return tensor, bias | |
def _combine_output_splits(self, outputs): | |
# stack output tensors | |
tensors = [o[0] for o in outputs] | |
tensor = super()._combine_output_splits(tensors) | |
# stack biases if applicable | |
biases = [o[1] for o in outputs if o[1] is not None] | |
if len(biases) > 0: | |
bias = super()._combine_output_splits(biases) | |
else: | |
bias = None | |
return tensor, bias | |