peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/runtime
/zero
/utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
from typing import List | |
import torch | |
from deepspeed import comm as dist | |
from deepspeed.utils import logger | |
from deepspeed.ops.adam import DeepSpeedCPUAdam | |
from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad | |
from deepspeed.ops.adam import FusedAdam | |
from deepspeed.ops.lion import DeepSpeedCPULion, FusedLion | |
from deepspeed.utils.nvtx import instrument_w_nvtx | |
from deepspeed.accelerator import get_accelerator | |
def _initialize_parameter_parallel_groups(parameter_parallel_size=None): | |
data_parallel_size = int(dist.get_world_size()) | |
parameter_parallel_size = parameter_parallel_size or data_parallel_size | |
logger.info("data_parallel_size: %s, parameter_parallel_size: %s", data_parallel_size, parameter_parallel_size) | |
assert data_parallel_size % parameter_parallel_size == 0, \ | |
'world size should be divisible by parameter parallel size' | |
rank = dist.get_rank() | |
my_group = None | |
for i in range(data_parallel_size // parameter_parallel_size): | |
ranks = range(i * parameter_parallel_size, (i + 1) * parameter_parallel_size) | |
group = dist.new_group(ranks) | |
if rank in ranks: | |
my_group = group | |
return my_group | |
class ZeRORuntimeException(Exception): | |
pass | |
ZERO_SUPPORTED_OPTIMIZERS = [ | |
torch.optim.Adam, torch.optim.AdamW, FusedAdam, DeepSpeedCPUAdam, torch.optim.Adagrad, DeepSpeedCPUAdagrad, | |
DeepSpeedCPULion, FusedLion | |
] | |
# Add apex FusedAdam to supported list if apex is installed | |
try: | |
import apex | |
if hasattr(apex, 'optimizers') and hasattr(apex.optimizers, 'FusedAdam'): | |
ZERO_SUPPORTED_OPTIMIZERS.append(apex.optimizers.FusedAdam) | |
except ImportError: | |
pass | |
def is_zero_supported_optimizer(optimizer): | |
if dist.get_rank() == 0: | |
logger.info(f'Checking ZeRO support for optimizer={optimizer.__class__.__name__} type={type(optimizer)}') | |
return type(optimizer) in ZERO_SUPPORTED_OPTIMIZERS | |
def get_lst_from_rank0(lst: List[int]) -> None: | |
""" | |
NOTE: creates both communication and synchronization overhead so should be used | |
sparingly | |
""" | |
lst_tensor = torch.tensor( | |
lst if dist.get_rank() == 0 else [-1] * len(lst), | |
dtype=int, | |
# device=get_accelerator().current_device_name(), | |
device=torch.device(get_accelerator().device_name(os.environ["LOCAL_RANK"])), | |
requires_grad=False, | |
) | |
dist.broadcast(lst_tensor, src=0, async_op=False) | |
return list(lst_tensor.cpu().numpy()) | |
def assert_ints_same_as_other_ranks(ints: List[int]) -> None: | |
""" | |
NOTE: creates both communication and synchronization overhead so should be | |
used sparingly | |
takes a list of ints from each rank and ensures that they are the same | |
across ranks, throwing an exception if they are not. | |
""" | |
rank0_ints = get_lst_from_rank0(ints) | |
if ints != rank0_ints: | |
raise RuntimeError(f"disagreement between rank0 and rank{dist.get_rank()}: " | |
f"rank0: {rank0_ints}, rank{dist.get_rank()}: {ints}") | |
def is_builtin_type(obj): | |
# https://stackoverflow.com/a/17795199 | |
return obj.__class__.__module__ == '__builtin__' or obj.__class__.__module__ == "builtins" | |
def isinstance_namedtuple(obj: object) -> bool: | |
""" | |
Is this an instance of namedtuple/NamedTuple? | |
From: https://stackoverflow.com/a/62692640 | |
Args: | |
obj (object): An object. | |
Returns: | |
bool: True if namedtuple/NamedTuple else False. | |
""" | |
return isinstance(obj, tuple) and hasattr(obj, '_asdict') and hasattr(obj, '_fields') | |
def is_zero_param(parameter): | |
if not torch.is_tensor(parameter): | |
return False | |
return hasattr(parameter, 'ds_id') | |
def apply_to_tensors_only(function, value, warning_msg_fn=None): | |
""" | |
Apply `function` to every Tensor in `value`. | |
Args: | |
functional: The function class to apply. | |
value (Any): Target object to apply `function` to. | |
Returns: | |
Any: Output of `function`. | |
""" | |
if isinstance(value, (tuple, list)): | |
touched_outputs = [] | |
for elem in value: | |
touched_output = apply_to_tensors_only(function, elem) | |
touched_outputs.append(touched_output) | |
if isinstance_namedtuple(value): | |
# namedtuples require a slightly different syntax. | |
return value.__class__(*touched_outputs) | |
return value.__class__(touched_outputs) | |
elif isinstance(value, dict): | |
# apply inplace to avoid recreating dict inherited objects | |
for key in value.keys(): | |
value[key] = apply_to_tensors_only(function, value[key]) | |
return value | |
elif isinstance(value, torch.Tensor): | |
# this also applies to torch.Tensor's subclasses like torch.nn.parameter.Parameter | |
touched_output = function(value) | |
# restore zero param attributes if those get stripped by `backward_function` | |
if not is_zero_param(touched_output) and is_zero_param(value): | |
touched_output.ds_param_alias = value | |
return touched_output | |
else: | |
if not is_builtin_type(value): | |
global warned | |
if warning_msg_fn and not warned and dist.get_rank() == 0: | |
logger.warning(warning_msg_fn(value)) | |
warned = True | |
return value | |