applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
5.55 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
This file is modified from fused_adam.py
"""
import torch
from .multi_tensor_apply import MultiTensorApply
multi_tensor_applier = MultiTensorApply(2048 * 32)
from deepspeed.accelerator import get_accelerator
from deepspeed.ops.op_builder import FusedLionBuilder
class FusedLion(torch.optim.Optimizer):
"""Implements Lion algorithm.
Currently GPU-only.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
.. _Symbolic Discovery of Optimization Algorithms:
https://doi.org/10.48550/arXiv.2302.06675
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0., set_grad_none=True):
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
super(FusedLion, self).__init__(params, defaults)
self.set_grad_none = set_grad_none
fused_lion_cuda = FusedLionBuilder().load()
# Skip buffer
self._dummy_overflow_buf = get_accelerator().IntTensor([0])
self.multi_tensor_lion = fused_lion_cuda.multi_tensor_lion
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(FusedLion, self).zero_grad()
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
"""
if any(p is not None for p in [grads, output_params, scale, grad_norms]):
raise RuntimeError('FusedLion has been updated.')
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
if len(group['params']) == 0:
continue
beta1, beta2 = group['betas']
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' not in group:
group['step'] = 0
# create lists for multi-tensor apply
g_16, p_16, m_16 = [], [], []
g_bf, p_bf, m_bf = [], [], []
g_32, p_32, m_32 = [], [], []
for p in group['params']:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise NotImplementedError('FusedLion does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
# DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately.
# While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time.
# In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists.
state['step'] = group.get('step', 0)
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
if p.dtype == torch.float16:
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state['exp_avg'])
elif p.dtype == torch.bfloat16:
g_bf.append(p.grad)
p_bf.append(p)
m_bf.append(state['exp_avg'])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state['exp_avg'])
else:
raise RuntimeError('FusedLion only support fp16, bf16 and fp32.')
if len(g_16) > 0:
state['step'] += 1
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_16, p_16, m_16], group['lr'],
beta1, beta2, state['step'], group['weight_decay'])
if len(g_bf) > 0:
state['step'] += 1
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_bf, p_bf, m_bf], group['lr'],
beta1, beta2, state['step'], group['weight_decay'])
if len(g_32) > 0:
state['step'] += 1
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_32, p_32, m_32], group['lr'],
beta1, beta2, state['step'], group['weight_decay'])
return loss