peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/_loss
/link.py
| """ | |
| Module contains classes for invertible (and differentiable) link functions. | |
| """ | |
| # Author: Christian Lorentzen <[email protected]> | |
| from abc import ABC, abstractmethod | |
| from dataclasses import dataclass | |
| import numpy as np | |
| from scipy.special import expit, logit | |
| from scipy.stats import gmean | |
| from ..utils.extmath import softmax | |
| class Interval: | |
| low: float | |
| high: float | |
| low_inclusive: bool | |
| high_inclusive: bool | |
| def __post_init__(self): | |
| """Check that low <= high""" | |
| if self.low > self.high: | |
| raise ValueError( | |
| f"One must have low <= high; got low={self.low}, high={self.high}." | |
| ) | |
| def includes(self, x): | |
| """Test whether all values of x are in interval range. | |
| Parameters | |
| ---------- | |
| x : ndarray | |
| Array whose elements are tested to be in interval range. | |
| Returns | |
| ------- | |
| result : bool | |
| """ | |
| if self.low_inclusive: | |
| low = np.greater_equal(x, self.low) | |
| else: | |
| low = np.greater(x, self.low) | |
| if not np.all(low): | |
| return False | |
| if self.high_inclusive: | |
| high = np.less_equal(x, self.high) | |
| else: | |
| high = np.less(x, self.high) | |
| # Note: np.all returns numpy.bool_ | |
| return bool(np.all(high)) | |
| def _inclusive_low_high(interval, dtype=np.float64): | |
| """Generate values low and high to be within the interval range. | |
| This is used in tests only. | |
| Returns | |
| ------- | |
| low, high : tuple | |
| The returned values low and high lie within the interval. | |
| """ | |
| eps = 10 * np.finfo(dtype).eps | |
| if interval.low == -np.inf: | |
| low = -1e10 | |
| elif interval.low < 0: | |
| low = interval.low * (1 - eps) + eps | |
| else: | |
| low = interval.low * (1 + eps) + eps | |
| if interval.high == np.inf: | |
| high = 1e10 | |
| elif interval.high < 0: | |
| high = interval.high * (1 + eps) - eps | |
| else: | |
| high = interval.high * (1 - eps) - eps | |
| return low, high | |
| class BaseLink(ABC): | |
| """Abstract base class for differentiable, invertible link functions. | |
| Convention: | |
| - link function g: raw_prediction = g(y_pred) | |
| - inverse link h: y_pred = h(raw_prediction) | |
| For (generalized) linear models, `raw_prediction = X @ coef` is the so | |
| called linear predictor, and `y_pred = h(raw_prediction)` is the predicted | |
| conditional (on X) expected value of the target `y_true`. | |
| The methods are not implemented as staticmethods in case a link function needs | |
| parameters. | |
| """ | |
| is_multiclass = False # used for testing only | |
| # Usually, raw_prediction may be any real number and y_pred is an open | |
| # interval. | |
| # interval_raw_prediction = Interval(-np.inf, np.inf, False, False) | |
| interval_y_pred = Interval(-np.inf, np.inf, False, False) | |
| def link(self, y_pred, out=None): | |
| """Compute the link function g(y_pred). | |
| The link function maps (predicted) target values to raw predictions, | |
| i.e. `g(y_pred) = raw_prediction`. | |
| Parameters | |
| ---------- | |
| y_pred : array | |
| Predicted target values. | |
| out : array | |
| A location into which the result is stored. If provided, it must | |
| have a shape that the inputs broadcast to. If not provided or None, | |
| a freshly-allocated array is returned. | |
| Returns | |
| ------- | |
| out : array | |
| Output array, element-wise link function. | |
| """ | |
| def inverse(self, raw_prediction, out=None): | |
| """Compute the inverse link function h(raw_prediction). | |
| The inverse link function maps raw predictions to predicted target | |
| values, i.e. `h(raw_prediction) = y_pred`. | |
| Parameters | |
| ---------- | |
| raw_prediction : array | |
| Raw prediction values (in link space). | |
| out : array | |
| A location into which the result is stored. If provided, it must | |
| have a shape that the inputs broadcast to. If not provided or None, | |
| a freshly-allocated array is returned. | |
| Returns | |
| ------- | |
| out : array | |
| Output array, element-wise inverse link function. | |
| """ | |
| class IdentityLink(BaseLink): | |
| """The identity link function g(x)=x.""" | |
| def link(self, y_pred, out=None): | |
| if out is not None: | |
| np.copyto(out, y_pred) | |
| return out | |
| else: | |
| return y_pred | |
| inverse = link | |
| class LogLink(BaseLink): | |
| """The log link function g(x)=log(x).""" | |
| interval_y_pred = Interval(0, np.inf, False, False) | |
| def link(self, y_pred, out=None): | |
| return np.log(y_pred, out=out) | |
| def inverse(self, raw_prediction, out=None): | |
| return np.exp(raw_prediction, out=out) | |
| class LogitLink(BaseLink): | |
| """The logit link function g(x)=logit(x).""" | |
| interval_y_pred = Interval(0, 1, False, False) | |
| def link(self, y_pred, out=None): | |
| return logit(y_pred, out=out) | |
| def inverse(self, raw_prediction, out=None): | |
| return expit(raw_prediction, out=out) | |
| class HalfLogitLink(BaseLink): | |
| """Half the logit link function g(x)=1/2 * logit(x). | |
| Used for the exponential loss. | |
| """ | |
| interval_y_pred = Interval(0, 1, False, False) | |
| def link(self, y_pred, out=None): | |
| out = logit(y_pred, out=out) | |
| out *= 0.5 | |
| return out | |
| def inverse(self, raw_prediction, out=None): | |
| return expit(2 * raw_prediction, out) | |
| class MultinomialLogit(BaseLink): | |
| """The symmetric multinomial logit function. | |
| Convention: | |
| - y_pred.shape = raw_prediction.shape = (n_samples, n_classes) | |
| Notes: | |
| - The inverse link h is the softmax function. | |
| - The sum is over the second axis, i.e. axis=1 (n_classes). | |
| We have to choose additional constraints in order to make | |
| y_pred[k] = exp(raw_pred[k]) / sum(exp(raw_pred[k]), k=0..n_classes-1) | |
| for n_classes classes identifiable and invertible. | |
| We choose the symmetric side constraint where the geometric mean response | |
| is set as reference category, see [2]: | |
| The symmetric multinomial logit link function for a single data point is | |
| then defined as | |
| raw_prediction[k] = g(y_pred[k]) = log(y_pred[k]/gmean(y_pred)) | |
| = log(y_pred[k]) - mean(log(y_pred)). | |
| Note that this is equivalent to the definition in [1] and implies mean | |
| centered raw predictions: | |
| sum(raw_prediction[k], k=0..n_classes-1) = 0. | |
| For linear models with raw_prediction = X @ coef, this corresponds to | |
| sum(coef[k], k=0..n_classes-1) = 0, i.e. the sum over classes for every | |
| feature is zero. | |
| Reference | |
| --------- | |
| .. [1] Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. "Additive | |
| logistic regression: a statistical view of boosting" Ann. Statist. | |
| 28 (2000), no. 2, 337--407. doi:10.1214/aos/1016218223. | |
| https://projecteuclid.org/euclid.aos/1016218223 | |
| .. [2] Zahid, Faisal Maqbool and Gerhard Tutz. "Ridge estimation for | |
| multinomial logit models with symmetric side constraints." | |
| Computational Statistics 28 (2013): 1017-1034. | |
| http://epub.ub.uni-muenchen.de/11001/1/tr067.pdf | |
| """ | |
| is_multiclass = True | |
| interval_y_pred = Interval(0, 1, False, False) | |
| def symmetrize_raw_prediction(self, raw_prediction): | |
| return raw_prediction - np.mean(raw_prediction, axis=1)[:, np.newaxis] | |
| def link(self, y_pred, out=None): | |
| # geometric mean as reference category | |
| gm = gmean(y_pred, axis=1) | |
| return np.log(y_pred / gm[:, np.newaxis], out=out) | |
| def inverse(self, raw_prediction, out=None): | |
| if out is None: | |
| return softmax(raw_prediction, copy=True) | |
| else: | |
| np.copyto(out, raw_prediction) | |
| softmax(out, copy=False) | |
| return out | |
| _LINKS = { | |
| "identity": IdentityLink, | |
| "log": LogLink, | |
| "logit": LogitLink, | |
| "half_logit": HalfLogitLink, | |
| "multinomial_logit": MultinomialLogit, | |
| } | |