peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/checkpoint
/deepspeed_checkpoint.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
from typing import Dict | |
import torch | |
from .reshape_3d_utils import model_3d_desc | |
from .reshape_utils import (basic_folder_validation, merge_state, partition_data, get_files, get_files_with_prefix) | |
from .constants import (MODEL_FILE_PREFIX, LAYER_FILE_PREFIX) | |
from .reshape_meg_2d import reshape_meg_2d_parallel, meg_2d_parallel_map | |
from .zero_checkpoint import ZeROCheckpoint | |
from .constants import * | |
EMBEDDING_LAYER_INDEX = 0 | |
FINAL_LAYER_NORM_INDEX = -1 | |
ARGS_KEY = 'args' | |
CHECKPOINT_INFO_KEY = 'checkpoint_info' | |
ITERATION_KEY = 'iteration' | |
SEQUENTIAL_LAYERS = [ | |
'input_layernorm.weight', 'input_layernorm.bias', 'self_attention.dense.bias', 'post_attention_layernorm.weight', | |
'post_attention_layernorm.bias', 'mlp.dense_4h_to_h.bias', 'position_embeddings.weight' | |
] | |
LAYER_CONCAT_DIM = {'self_attention.dense.weight': 1, 'mlp.dense_4h_to_h.weight': 1} | |
class DeepSpeedCheckpoint(object): | |
def __init__(self, dir, tp_degree=None, pp_degree=None, dp_degree=None): | |
self.dir = dir | |
pipeline_parallel = len(get_files_with_prefix(get_files(dir), LAYER_FILE_PREFIX)) > 0 | |
self._validate_folder(dir, pipeline_parallel) | |
self.zero_checkpoint = ZeROCheckpoint(dir) | |
self.file_list = get_files(dir) | |
self.layer_files = get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX) | |
self.mp_rank_files = get_files_with_prefix(self.file_list, MODEL_FILE_PREFIX) | |
self.layer_keys = self._get_layer_keys() | |
self.layer_count = len(self.layer_keys) | |
self.tp_degree = self.zero_checkpoint.get_src_tp_degree() if tp_degree is None else tp_degree | |
self.pp_degree = self.zero_checkpoint.get_src_pp_degree() if pp_degree is None else pp_degree | |
self.dp_degree = self.zero_checkpoint.get_src_dp_degree() if dp_degree is None else dp_degree | |
self.original_world_size = self.zero_checkpoint.get_src_tp_degree() * self.zero_checkpoint.get_src_pp_degree( | |
) * self.zero_checkpoint.get_src_dp_degree() | |
self.world_size = self.tp_degree * self.pp_degree * self.dp_degree | |
self.old_2d_map = meg_2d_parallel_map(self.zero_checkpoint.get_src_pp_degree(), | |
self.zero_checkpoint.get_src_tp_degree()) | |
self.old_2d_map.simple_init() | |
self.new_2d_map = reshape_meg_2d_parallel(old_pp_degree=self.zero_checkpoint.get_src_pp_degree(), | |
old_tp_degree=self.zero_checkpoint.get_src_tp_degree(), | |
new_pp_degree=self.pp_degree, | |
new_tp_degree=self.tp_degree) | |
if self.is_change_pp_degree() or self.is_change_tp_degree() or self.is_change_dp_degree(): | |
self.zero_checkpoint.reshape(model_3d_desc(self.pp_degree, self.tp_degree, self.dp_degree)) | |
self.global_state = {} | |
self._sanity_check() | |
self.pp_to_transformer_map = self._build_pp_transformer_map() | |
self.transformer_file_map = self._build_transformer_file_map() | |
self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX) | |
self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX) | |
self._build_global_state() | |
def is_change_tp_degree(self): | |
return self.tp_degree != self.zero_checkpoint.get_src_tp_degree() | |
def is_change_pp_degree(self): | |
return self.pp_degree != self.zero_checkpoint.get_src_pp_degree() | |
def is_change_dp_degree(self): | |
return self.dp_degree != self.zero_checkpoint.get_src_dp_degree() | |
def show_2d_mapping(self): | |
print(f'reshaped 2d map ---- begin') | |
for i in range(self.pp_degree): | |
for j in range(self.tp_degree): | |
file_list = self.get_2d_parallel_files(pp_index=i, tp_index=j) | |
print(f'[{i}, {j}] = {file_list}') | |
print(f'reshaped 2d map ---- end') | |
def show_tp_embedding_map(self): | |
self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers') | |
def show_tp_final_norm_map(self): | |
self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers') | |
def show_pp_transformer_map(self): | |
self._dump_mapping(self.pp_to_transformer_map, 'pp_to_transformer_layers') | |
def show_transformer_file_map(self): | |
self._dump_mapping(self.transformer_file_map, 'rank_to_transformer_files') | |
def _build_global_state(self): | |
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) | |
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0) | |
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None) | |
def get_zero_checkpoint_state(self, pp_index, tp_index, dp_index) -> dict: | |
return self.zero_checkpoint.get_state_for_rank(pp_index=pp_index, | |
tp_index=tp_index, | |
dp_index=dp_index, | |
keys_to_ignore=[PARAM_SHAPES]) | |
def get_zero_files(self, pp_index, tp_index, dp_index) -> list: | |
return self.zero_checkpoint.get_files_for_rank(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index) | |
def get_embedding_layer_id(self): | |
return self.layer_keys[EMBEDDING_LAYER_INDEX] | |
def get_final_norm_layer_id(self): | |
return self.layer_keys[FINAL_LAYER_NORM_INDEX] | |
def get_iteration(self): | |
if not ITERATION_KEY in self.global_state: | |
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) | |
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0) | |
return self.global_state[ITERATION_KEY] | |
def get_embedding_state(self, tp_index: int) -> Dict: | |
assert tp_index in self.tp_to_embedding_map.keys() | |
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]] | |
sd = self._merge_state_dicts(sd_list) | |
return sd | |
def get_embedding_files(self, tp_index: int) -> list: | |
assert tp_index in self.tp_to_embedding_map.keys() | |
return self.tp_to_embedding_map[tp_index] | |
def _get_checkpoint_value(self, key): | |
if not key in self.global_state: | |
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu')) | |
self.global_state[key] = sd.get(key, None) | |
return self.global_state[key] | |
def get_args(self): | |
return self._get_checkpoint_value(ARGS_KEY) | |
def get_checkpoint_info(self, info_key=CHECKPOINT_INFO_KEY): | |
return self._get_checkpoint_value(info_key) | |
def get_2d_parallel_state(self, tp_index: int, pp_index: int) -> dict: | |
assert tp_index < self.tp_degree | |
assert pp_index < self.pp_degree | |
fname_list = self.get_2d_parallel_files(tp_index=tp_index, pp_index=pp_index) | |
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list] | |
merged_sd = None | |
for sd in sd_list: | |
if merged_sd is None: | |
merged_sd = sd | |
else: | |
merged_sd = merge_state(merged_sd, sd) | |
return merged_sd | |
def get_transformer_state(self, tp_index: int, pp_index: int) -> list: | |
assert tp_index < self.tp_degree | |
assert pp_index < self.pp_degree | |
t_list = [] | |
for fname_list in self.transformer_file_map[(tp_index, pp_index)]: | |
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list] | |
sd = self._merge_state_dicts(sd_list) | |
t_list.append(sd) | |
return t_list | |
def get_pp_transformer_map(self, pp_index: int) -> list: | |
assert pp_index < self.pp_degree | |
return self.pp_to_transformer_map[pp_index] | |
def get_final_norm_state(self, tp_index: int) -> Dict: | |
assert tp_index in self.tp_to_final_norm_map.keys() | |
sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu')) | |
return sd | |
def get_final_norm_files(self, tp_index: int) -> list: | |
assert tp_index in self.tp_to_final_norm_map.keys() | |
return self.tp_to_final_norm_map[tp_index] | |
def _build_tp_other_layer_map(self, layer_index: int): | |
data_map = {} | |
if len(self.layer_files) < 1: | |
return data_map | |
assert layer_index <= len(self.layer_files) | |
layer_files = get_files_with_prefix(self.layer_files, self.layer_keys[layer_index]) | |
layer_file_partitions = partition_data(layer_files, self.tp_degree) | |
data_map = {i: flist for i, flist in enumerate(layer_file_partitions)} | |
return data_map | |
def get_2d_parallel_files(self, tp_index: int, pp_index: int) -> list: | |
assert tp_index < self.tp_degree | |
assert pp_index < self.pp_degree | |
file_indices = self.new_2d_map.get_data(pp_index=pp_index, tp_index=tp_index) | |
return [self.mp_rank_files[i] for i in file_indices] | |
def _build_pp_transformer_map(self): | |
data_map = {} | |
if self.pp_degree > 0: | |
transformer_layers = self.layer_keys[1:-1] | |
layers_per_pp = len(transformer_layers) // self.pp_degree | |
data_map = { | |
i: transformer_layers[i * layers_per_pp:(i + 1) * layers_per_pp] | |
for i in range(0, self.pp_degree) | |
} | |
return data_map | |
def _dump_mapping(self, data_map, map_tag=None): | |
if map_tag is not None: | |
print(f'Dump mapping: {map_tag}') | |
for k, v in data_map.items(): | |
print(f'{k} = {v}') | |
def _build_transformer_file_map(self): | |
transformer_layer_keys = self.layer_keys[1:-1] | |
file_map = {} | |
# XXX: this is not guaranteed | |
layers_per_pp = 1 | |
if self.pp_degree > 0: | |
layers_per_pp = len(transformer_layer_keys) // self.pp_degree | |
#print(f"{transformer_layer_keys} {layers_per_pp}") | |
for key_index, layer_key in enumerate(transformer_layer_keys): | |
pp_index = key_index // layers_per_pp | |
layer_files = get_files_with_prefix(self.layer_files, layer_key) | |
layer_file_partitions = partition_data(layer_files, self.tp_degree) | |
for tp_index in range(self.tp_degree): | |
map_key = (tp_index, pp_index) | |
if not map_key in file_map.keys(): | |
file_map[map_key] = [] | |
file_map[map_key].append(layer_file_partitions[tp_index]) | |
return file_map | |
def _sanity_check(self): | |
assert len(self.mp_rank_files) % self.tp_degree == 0 | |
assert self.zero_checkpoint.num_files % (self.pp_degree * self.tp_degree) == 0 | |
assert self.zero_checkpoint.num_files % (self.tp_degree) == 0 | |
# XXX: fix me - isn't always the case | |
# only true with --pp-partition-method 'type:transformer|embedding' \ | |
# assert (len(self.layer_keys) - 2) % self.pp_degree == 0 | |
def validate_files(self): | |
for file in self.file_list: | |
if not os.path.isfile(file): | |
print(f'Error: {file} is not existent') | |
def _get_layer_keys(self): | |
key_set = set() | |
key_len = len(LAYER_FILE_PREFIX) + 2 | |
for file_path in self.layer_files: | |
_, fname = os.path.split(file_path) | |
key_set.add(fname[:key_len]) | |
return sorted(list(key_set)) | |
def _merge_state_dicts(self, sd_list): | |
merged_sd = {} | |
for key in sd_list[0].keys(): | |
if not key in SEQUENTIAL_LAYERS: | |
cat_dim = LAYER_CONCAT_DIM.get(key, 0) | |
merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim) | |
else: | |
merged_sd[key] = sd_list[0][key] | |
return merged_sd | |
def _validate_folder(self, dir, pipeline_parallel): | |
basic_folder_validation(dir) | |
file_list = get_files(dir) | |
file_prefix_list = [MODEL_FILE_PREFIX] | |
if pipeline_parallel: | |
file_prefix_list.extend([LAYER_FILE_PREFIX, f'{LAYER_FILE_PREFIX}01']) | |
for file_prefix in file_prefix_list: | |
ckpt_files = get_files_with_prefix(file_list, file_prefix) | |
assert len( | |
ckpt_files | |
) > 0, f'{dir} seems a bogus DeepSpeed checkpoint folder: Cannot find {file_prefix}* files in there.' | |