applied-ai-018's picture
Add files using upload-large-folder tool
179036e verified
raw
history blame
5.42 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from .constants import (BASE_OPTIMIZER_STATE, GROUP_PADDINGS, OPTIMIZER_STATE_DICT, PARTITION_COUNT)
from .reshape_utils import (basic_folder_validation, get_zero_files, merge_state)
from .reshape_3d_utils import (model_3d_desc, get_model_3d_descriptor)
GROUP_STATE_KEY = 'state'
class ZeROCheckpoint(object):
def __init__(self, dir):
basic_folder_validation(dir)
self.dir = dir
self.file_list = get_zero_files(dir)
self.num_files = len(self.file_list)
assert self.num_files > 0, f'No ZeRO files found in {dir}'
self.src_3d = get_model_3d_descriptor(dir)
self.target_3d = model_3d_desc(pp_degree=self.src_3d.pp_degree,
tp_degree=self.src_3d.tp_degree,
dp_degree=self.src_3d.dp_degree)
self._3d_file_map = self.src_3d.reshape(self.target_3d)
def get_src_world_size(self):
return self.src_3d.world_size()
def get_src_tp_degree(self):
return self.src_3d.tp_degree
def get_src_pp_degree(self):
return self.src_3d.pp_degree
def get_src_dp_degree(self):
return self.src_3d.dp_degree
def get_file_indices_for_rank(self, pp_index, tp_index, dp_index):
assert dp_index < len(self._3d_file_map), f'DP index {dp_index} >= DP degree {len(self._3d_file_map)}'
dp_2d_map = self._3d_file_map[dp_index]
return dp_2d_map.get_data(pp_index, tp_index)
def get_files_for_rank(self, pp_index, tp_index, dp_index):
file_idx_list = self.get_file_indices_for_rank(pp_index, tp_index, dp_index)
return [self.file_list[idx] for idx in file_idx_list]
def get_state_for_rank(self, pp_index, tp_index, dp_index, keys_to_ignore=[], strip_tensor_paddings=True):
state_file_list = self.get_files_for_rank(pp_index, tp_index, dp_index)
merged_sd = None
for state_file in state_file_list:
sd = torch.load(state_file, map_location=torch.device('cpu'))
for key in keys_to_ignore:
sd.pop(key, None)
if strip_tensor_paddings:
self._strip_tensor_paddings(sd)
if merged_sd is None:
merged_sd = sd
else:
merged_sd = merge_state(merged_sd, sd)
self._update_partition_count(merged_sd)
if strip_tensor_paddings:
self._clear_group_paddings(merged_sd)
return merged_sd
def print_3d_index_map(self, tag=None):
if tag:
print(f'3D index map: {tag}')
for dp_index, _2d_map in enumerate(self._3d_file_map):
_2d_map.print_data(f'dp = {dp_index}')
def print_3d_file_map(self, tag=None):
if tag:
print(f'3D file map: {tag}')
for dp_index, _2d_map in enumerate(self._3d_file_map):
for pp_index in _2d_map.pp_degree:
for tp_index in _2d_map.tp_degree:
file_index_list = _2d_map.get_data(pp_index, tp_index)
file_list = [self.file_list[idx] for idx in file_index_list]
print(f'{pp_index}, {tp_index}, {dp_index} => {file_list}')
def reshape(self, target_3d_desc: model_3d_desc):
self.target_3d = target_3d_desc
self._3d_file_map = self.src_3d.reshape(self.target_3d)
def _strip_tensor_paddings(self, sd):
param_group_states = self._get_param_group_states(sd)
if param_group_states is None:
return
group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS)
if group_paddings is None:
return
for key, group_state in param_group_states.items():
if group_paddings[key] == 0:
continue
for state_name, state_value in group_state.items():
if state_name != "step" and torch.is_tensor(state_value):
raw_length = state_value.numel() - group_paddings[key]
group_state[state_name] = torch.narrow(state_value, 0, 0, raw_length).clone()
else:
group_state[state_name] = state_value
def _clear_group_paddings(self, sd):
group_paddings = self._get_optimizer_state(sd, GROUP_PADDINGS)
if group_paddings:
num_groups = len(group_paddings)
sd[OPTIMIZER_STATE_DICT][GROUP_PADDINGS] = [0] * num_groups
def _get_optimizer_state(self, sd, state_key):
optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None)
if optimizer_state is None:
return None
return optimizer_state.get(state_key, None)
def _get_param_group_states(self, sd):
optimizer_state = sd.get(OPTIMIZER_STATE_DICT, None)
if optimizer_state is None:
return None
base_optimizer_state = optimizer_state.get(BASE_OPTIMIZER_STATE, None)
if base_optimizer_state is None:
return None
return base_optimizer_state.get(GROUP_STATE_KEY, None)
def _update_partition_count(self, sd):
partition_counts = self._get_optimizer_state(sd, PARTITION_COUNT)
if partition_counts:
num_groups = len(partition_counts)
sd[OPTIMIZER_STATE_DICT][PARTITION_COUNT] = [self.target_3d.dp_degree] * num_groups