peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/engine.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
import time | |
import os | |
from deepspeed import comm as dist | |
from deepspeed.utils.logging import log_dist | |
from torch.nn.modules import Module | |
from packaging import version as pkg_version | |
from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine | |
from deepspeed.utils.timer import SynchronizedWallClockTimer | |
from ..runtime.state_dict_factory import SDLoaderFactory | |
from ..runtime.weight_quantizer import WeightQuantization | |
from ..module_inject import replace_transformer_layer, generic_injection | |
from ..comm.comm import init_distributed | |
from ..pipe import PipelineModule | |
from ..moe.utils import has_moe_layers | |
from ..module_inject import LinearAllreduce, LinearLayer, Normalize, ReplaceWithTensorSlicing | |
from deepspeed.accelerator import get_accelerator | |
from ..module_inject.policy import TransformerPolicy | |
from ..module_inject.auto_tp import AutoTP | |
from ..module_inject.replace_policy import generic_policies | |
from ..module_inject.auto_tp_model_utils import build_bloom_alibi_tensor, build_mpt_atten_bias_tensor, build_mpt_alibi_tensor, get_alibi_mask | |
from ..ops.transformer.inference.ds_attention import DeepSpeedSelfAttention | |
from ..model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference | |
DS_INFERENCE_ENABLED = False | |
from torch import nn | |
INFERENCE_MODEL_TIMER = "model-forward-inference" | |
class InferenceEngine(Module): | |
inference_mp_group = None | |
inference_ep_group = None | |
expert_mp_group = None | |
def __init__(self, model, config): | |
""" | |
Args: | |
model: torch.nn.Module | |
config: DeepSpeedInferenceConfig | |
""" | |
global DS_INFERENCE_ENABLED | |
DS_INFERENCE_ENABLED = True | |
super().__init__() | |
# Have to import here because inference_module is a global, but python | |
# globals only work at the module level and will not be updated unless | |
# we import it each time we init a new inference engine. | |
from ..model_implementations.transformers.ds_transformer import inference_module | |
if inference_module is not None: | |
self.destroy() | |
self.module = model | |
self._config = config | |
self._get_model_config_generate(config) # keep for weird backward compatibility | |
# patch model generate with ours if model uses it | |
if hasattr(self.module, "generate"): | |
self.generate = self._generate | |
if hasattr(self.module, "config"): | |
TransformerPolicy.hf_model_config = self.module.config | |
if config.dtype == torch.half and not get_accelerator().is_fp16_supported(): | |
raise ValueError("Type fp16 is not supported.") | |
# todo: keep this self.injection_dict because we don't use to change config.injection_policy API | |
# todo: this will get changed when Molly's PR on auto injection dict is merged | |
self.injection_dict = config.injection_policy | |
# todo: refactor the mp_group and mp_size related in the next refactor | |
self.mp_group = config.tensor_parallel.tp_group | |
self.mpu = config.tensor_parallel.mpu | |
#self._validate_args(self.mpu, config.replace_with_kernel_inject) | |
self.quantize_merge_count = 1 | |
self.quantization_scales = None | |
# these are not needed in the config as we are creating them ourselves in the inference engine | |
self.ep_group = None # config.moe.ep_group | |
self.expert_mp_group = None # config.moe.ep_mp_group | |
self.cuda_graph_created = False | |
self.checkpoint_engine = TorchCheckpointEngine() | |
quantization_setting = None | |
self._init_quantization_setting( | |
quantization_setting) # todo: update with the new quant config for weight quant | |
self.model_profile_enabled = False | |
self._model_times = [] | |
if not self.injection_dict and config.replace_with_kernel_inject: | |
# This is a hack to remove the prepare_mask function on HF side for BLOOM architecture | |
self.remove_mask_prepare_for_bloom() | |
if self.injection_dict or not config.replace_with_kernel_inject: | |
# This is a hack to redefine the alibi func due to TP | |
if config.tensor_parallel.tp_size > 1: | |
self.build_alibi_tensor() | |
self.build_attn_bias() | |
if get_accelerator().device_name() == 'cuda' and config.enable_cuda_graph: | |
assert pkg_version.parse(torch.__version__) >= pkg_version.parse("1.10"), \ | |
"If you want to use cuda graph, please upgrade torch to at least v1.10" | |
# convert model to intended dtype | |
if config.dtype: | |
self._convert_to_dtype(config) | |
if self.mpu: | |
config.tensor_parallel.tp_size = dist.get_world_size(group=self.mpu.get_model_parallel_group()) | |
self.mp_group = self.mpu.get_model_parallel_group() | |
elif config.tensor_parallel.tp_size > 1: | |
self._create_model_parallel_group(config) | |
config.tensor_parallel.tp_group = self.mp_group | |
if isinstance(self.module, torch.nn.Module): | |
moe, _ = has_moe_layers(self.module) | |
else: | |
moe = False | |
if moe and dist.get_world_size() > 1: | |
self._create_ep_parallel_group(config.moe.moe_experts) | |
# We only support three modes: 1) user specified policy for tensor-parallelism, 2) kernel injection (replace_with_kernel_inject), and 3) automatic tensor parallelism if tp_size > 1. | |
if self.injection_dict: | |
# 1. User specified Tensor Parallelism | |
assert not config.replace_with_kernel_inject, "Cannot use both user specified injection policy and kernel injection" | |
for client_module, injection_policy in self.injection_dict.items(): | |
assert issubclass(client_module, | |
torch.nn.Module), f"{client_module} is not a subclass of torch.nn.Module" | |
# construct the tuple and pass that instead of a string or dict. | |
if isinstance(injection_policy, str): | |
config.injection_policy_tuple = (injection_policy, ) | |
else: | |
config.injection_policy_tuple = injection_policy | |
layer_names = [name for name, _ in self.module.named_modules()] | |
for policy in config.injection_policy_tuple: | |
if not any(name.endswith(policy) for name in layer_names): | |
raise ValueError(f"Injection policy layer'{policy}' not valid.") | |
self._apply_injection_policy(config, client_module) | |
else: | |
if config.replace_with_kernel_inject: | |
# 2. DeepSpeed Kernel Injection | |
self._apply_injection_policy(config) | |
elif config.tensor_parallel.tp_size > 1: | |
# 3. Automatic Tensor Parallelism | |
parser_dict = AutoTP.tp_parser(model) | |
print("AutoTP: ", parser_dict) | |
for client_module, injection_policy in parser_dict: | |
if isinstance(injection_policy, str): | |
config.injection_policy_tuple = (injection_policy, ) | |
else: | |
config.injection_policy_tuple = injection_policy | |
self._apply_injection_policy(config, client_module) | |
device = get_accelerator().current_device_name() | |
# NOTE: This check assumes a Hugging Face hierarchy for the device type i.e. module.device.type | |
is_meta_device = hasattr(self.module, "device") and self.module.device.type == 'meta' | |
if is_meta_device: | |
self.module.to_empty(device=device) | |
else: | |
self.module.to(device) | |
if config.tensor_parallel.tp_size > 1: | |
_rng_state = get_accelerator().get_rng_state().to(get_accelerator().current_device_name()) | |
dist.broadcast(_rng_state, 0) | |
get_accelerator().set_rng_state(_rng_state.cpu()) | |
if config.tensor_parallel.tp_size > 1: | |
assert not config.enable_cuda_graph, "Cuda graph is not supported for model parallelism" | |
# Check if local CUDA graphs can be created in replacement modules | |
self.local_cuda_graph = self._local_cuda_graph_used(self.module) | |
def destroy(self): | |
# Have to import here because inference_module is a global, but python | |
# globals only work at the module level and will not be updated unless | |
# we import it each time we init a new inference engine. | |
from ..model_implementations.transformers.ds_transformer import inference_module | |
DeepSpeedTransformerInference.layer_id = 0 | |
DeepSpeedSelfAttention.num_layers = 0 | |
if inference_module is not None: | |
inference_module.release_workspace() | |
inference_module = None | |
def profile_model_time(self, use_cuda_events=True): | |
if not self.model_profile_enabled and not self._config.enable_cuda_graph: | |
self.module.register_forward_pre_hook(self._pre_forward_hook) | |
self.module.register_forward_hook(self._post_forward_hook) | |
self.model_profile_enabled = True | |
self.use_cuda_events = use_cuda_events | |
if self.use_cuda_events: | |
self.timers = SynchronizedWallClockTimer() | |
# todo: remove this once all the config dicts are centralized from top level pydantic config | |
def _get_model_config_generate(self, config): | |
# this is being passed to replace_transformer_layer(config=self.user_model_config_dict) | |
self.config = getattr(self.module, 'config', None) if config.config is None else config.config | |
def remove_mask_prepare_for_bloom(self): | |
if hasattr(self.module, 'transformer'): | |
if hasattr(self.module.transformer, '_prepare_attn_mask'): | |
self.module.transformer._prepare_attn_mask = lambda attention_mask, *args, **kwargs: attention_mask | |
def build_alibi_tensor(self): | |
if hasattr(self.module, 'transformer'): | |
if hasattr(self.module.transformer, 'build_alibi_tensor'): | |
self.module.transformer.build_alibi_tensor = build_bloom_alibi_tensor | |
if hasattr(self.module.transformer, 'build_mpt_alibi_tensor'): | |
self.module.transformer.build_mpt_alibi_tensor_orig = self.module.transformer.build_mpt_alibi_tensor | |
self.module.transformer.__class__.build_mpt_alibi_tensor = build_mpt_alibi_tensor | |
if hasattr(self.module, 'model'): | |
if hasattr(self.module.model, 'get_alibi_mask'): | |
self.module.model.get_alibi_mask_orig = self.module.model.get_alibi_mask | |
self.module.model.__class__.get_alibi_mask = get_alibi_mask | |
def build_attn_bias(self): | |
if hasattr(self.module, 'transformer'): | |
if hasattr(self.module.transformer, '_attn_bias'): | |
self.module.transformer._attn_bias_orig = self.module.transformer._attn_bias | |
self.module.transformer.__class__._attn_bias = build_mpt_atten_bias_tensor | |
def _pre_forward_hook(self, module, *inputs, **kwargs): | |
if self.use_cuda_events: | |
self.timers(INFERENCE_MODEL_TIMER).start() | |
else: | |
get_accelerator().synchronize() | |
self._start = time.time() | |
def _post_forward_hook(self, module, input, output): | |
if self.use_cuda_events: | |
self.timers(INFERENCE_MODEL_TIMER).stop() | |
elapsed_time = self.timers(INFERENCE_MODEL_TIMER).elapsed(reset=True) | |
else: | |
get_accelerator().synchronize() | |
self._end = time.time() | |
elapsed_time = (self._end - self._start) * 1e3 # convert seconds to ms | |
self._model_times.append(elapsed_time) | |
def _create_model_parallel_group(self, config): | |
# Call the init process | |
if InferenceEngine.inference_mp_group is None: | |
init_distributed() | |
local_rank = int(os.getenv('LOCAL_RANK', '0')) | |
get_accelerator().set_device(local_rank) | |
ranks = [i for i in range(config.tensor_parallel.tp_size)] | |
self.mp_group = dist.new_group(ranks) | |
InferenceEngine.inference_mp_group = self.mp_group | |
else: | |
self.mp_group = InferenceEngine.inference_mp_group | |
def _create_ep_parallel_group(self, moe_experts): | |
# Call the init process | |
self.ep_group = {} | |
self.expert_mp_group = {} | |
moe_experts = moe_experts if type(moe_experts) is list else [moe_experts] | |
for e in moe_experts: | |
self.ep_group.update({e: None}) | |
self.expert_mp_group.update({e: None}) | |
for moe_ep_size in self.ep_group.keys(): | |
num_ep_groups = dist.get_world_size() // moe_ep_size | |
for i in range(num_ep_groups): | |
ep_cnt = i * moe_ep_size | |
size = dist.get_world_size() if moe_ep_size > dist.get_world_size() else moe_ep_size | |
ranks = list(range(ep_cnt, ep_cnt + size)) | |
_ep_group = dist.new_group(ranks) | |
if dist.get_rank() in ranks: | |
self.ep_group.update({moe_ep_size: _ep_group}) | |
if dist.get_world_size() > moe_ep_size: | |
num_expert_mp_groups = dist.get_world_size() // num_ep_groups | |
expert_mp_size = dist.get_world_size() // moe_ep_size | |
for i in range(num_expert_mp_groups): | |
expert_mp_comm_ranks = [i + nr * moe_ep_size for nr in range(expert_mp_size)] | |
_expert_mp_group = dist.new_group(expert_mp_comm_ranks) | |
if dist.get_rank() in expert_mp_comm_ranks: | |
self.expert_mp_group.update({moe_ep_size: _expert_mp_group}) | |
def _init_quantization_setting(self, quantization_setting): | |
self.quantize_bits = 8 | |
self.mlp_extra_grouping = False | |
self.quantize_groups = 1 | |
if type(quantization_setting) is tuple: | |
self.mlp_extra_grouping, \ | |
self.quantize_groups = quantization_setting | |
elif quantization_setting is not None: | |
self.quantize_groups = quantization_setting | |
log_dist( | |
f"quantize_bits = {self.quantize_bits} " | |
f"mlp_extra_grouping = {self.mlp_extra_grouping}, " | |
f"quantize_groups = {self.quantize_groups}", [0]) | |
# TODO: remove this function and add this functionality to pydantic config checking | |
def _validate_args(self, mpu, replace_with_kernel_inject): | |
# TODO: to support SD pipeline we need to avoid this check for now | |
if replace_with_kernel_inject and not isinstance(self.module, Module): | |
raise ValueError(f"model must be a torch.nn.Module, got {type(self.module)}") | |
if not isinstance(self._config.tensor_parallel.tp_size, int) or self._config.tensor_parallel.tp_size < 1: | |
raise ValueError(f"mp_size must be an int >= 1, got {self._config.tensor_parallel.tp_size}") | |
if mpu: | |
methods = ["get_model_parallel_group", "get_data_parallel_group"] | |
for method in methods: | |
if not hasattr(mpu, method): | |
raise ValueError(f"mpu is missing {method}") | |
if self._config.checkpoint is not None and not isinstance(self._config.checkpoint, (str, dict)): | |
raise ValueError(f"checkpoint must be None, str or dict, got {type(self._config.checkpoint)}") | |
supported_dtypes = [None, torch.half, torch.int8, torch.float] | |
if self._config.dtype not in supported_dtypes: | |
raise ValueError(f"{self._config.dtype} not supported, valid dtype: {supported_dtypes}") | |
if self.injection_dict is not None and not isinstance(self.injection_dict, dict): | |
raise ValueError(f"injection_dict must be None or a dict, got: {self.injection_dict}") | |
def load_model_with_checkpoint(self, r_module): | |
self.mp_replace = ReplaceWithTensorSlicing( | |
mp_group=self.mp_group, mp_size=self._config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1) | |
error_msgs = [] | |
def load(module, state_dict, prefix): | |
args = (state_dict, prefix, {}, True, [], [], error_msgs) | |
if hasattr(module, 'weight'): | |
if module.weight.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data, | |
device="cpu"), | |
requires_grad=module.weight.data.requires_grad) | |
if 'query_key_value' in prefix: | |
module.weight = self.mp_replace.strided_copy(module.weight.data, | |
state_dict[prefix + 'weight'], | |
num_splits=3) | |
else: | |
module.weight = self.mp_replace.copy(module.weight.data, state_dict[prefix + 'weight']) | |
else: | |
if module.norm.weight.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.norm.weight = torch.nn.parameter.Parameter( | |
data=torch.empty_like(module.norm.weight.data, device="cpu"), | |
requires_grad=module.norm.weight.data.requires_grad) | |
module.norm.weight = self.mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight']) | |
if prefix + 'bias' in self.key_list: | |
if hasattr(module, 'norm'): | |
if module.norm.bias.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.norm.bias = torch.nn.parameter.Parameter( | |
data=torch.empty_like(module.norm.bias.data, device="cpu"), | |
requires_grad=module.norm.bias.data.requires_grad) | |
module.norm.bias = self.mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias']) | |
else: | |
if module.bias.data.is_meta: | |
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here | |
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, | |
device="cpu"), | |
requires_grad=module.bias.data.requires_grad) | |
data = state_dict[prefix + 'bias'] | |
data = data.to(get_accelerator().current_device_name()) | |
module.bias = self.mp_replace.copy(module.bias, data) | |
layer_policies = { | |
nn.Linear: load, | |
nn.Embedding: load, | |
nn.LayerNorm: load, | |
LinearLayer: load, | |
LinearAllreduce: load | |
} | |
def load_module_recursive(module, prefix='', level=0): | |
for name, child in module.named_children(): | |
if child.__class__ in layer_policies: | |
checking_key = prefix + name + '.' | |
if not any(checking_key in item for item in self.key_list): | |
continue | |
if len(list(child.parameters())) > 0 and list(child.parameters())[0].numel() == 0: | |
if len(child.weight.ds_shape) == 1: | |
child = Normalize(dim=child.weight.ds_shape[-1], dtype=child.weight.dtype, eps=child.eps) | |
setattr(module, name, child) | |
load(child, self.sd, prefix + name + '.') | |
else: | |
load_module_recursive(child, prefix if level == 0 else prefix + name + '.', level + 1) | |
load_module_recursive(r_module) | |
embedding_weight = None | |
for n, p in r_module.named_parameters(): | |
if "word_embeddings." in n or "embed_tokens." in n or "wte." in n: | |
embedding_weight = p | |
if embedding_weight is not None and hasattr(r_module, "lm_head") and hasattr( | |
r_module.lm_head, "weight") and r_module.lm_head.weight.is_meta: | |
r_module.lm_head.weight = embedding_weight | |
def _apply_injection_policy(self, config, client_module=None): | |
# client_module is only passed when using the injection_dict method. | |
checkpoint_dir = config.checkpoint | |
checkpoint = SDLoaderFactory.get_sd_loader_json(checkpoint_dir, | |
self.checkpoint_engine) if checkpoint_dir is not None else None | |
generic_injection(self.module, dtype=config.dtype, enable_cuda_graph=config.enable_cuda_graph) | |
if isinstance(self.module, torch.nn.Module): | |
# config is our DeepSpeedInferenceConfig and self.config is the HF model config | |
replace_transformer_layer(client_module, self.module, checkpoint, config, self.config) | |
def _get_all_ckpt_names(self, checkpoints_path, tag): | |
ckpt_file_pattern = self._get_ckpt_name(checkpoints_path, tag, mp_placeholder="*") | |
import glob | |
ckpt_files = glob.glob(ckpt_file_pattern) | |
ckpt_files.sort() | |
return ckpt_files | |
def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None): | |
if mp_placeholder is not None: | |
mp_rank_str = mp_placeholder | |
else: | |
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() | |
mp_rank_str = "{:02d}".format(mp_rank) | |
ckpt_name = os.path.join( | |
checkpoints_path, | |
"mp_rank_" + mp_rank_str + "_model_states.pt", | |
) | |
return ckpt_name | |
def _load_checkpoint(self, load_dir, load_module_strict=True, tag=None): | |
is_pipe_parallel = isinstance(self.module, PipelineModule) | |
if is_pipe_parallel: | |
raise RuntimeError('pipeline parallelism is currently not supported in inference.') | |
if not isinstance(load_dir, dict) and os.path.isdir(load_dir): | |
if tag is None: | |
latest_path = os.path.join(load_dir, "latest") | |
if os.path.isfile(latest_path): | |
with open(latest_path, "r") as fd: | |
tag = fd.read().strip() | |
ckpt_list = self._get_all_ckpt_names(load_dir, tag) | |
sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, self.checkpoint_engine) | |
else: | |
sd_loader = SDLoaderFactory.get_sd_loader_json(load_dir, self.checkpoint_engine) | |
checkpoint = sd_loader['checkpoints'] | |
if type(checkpoint) is list: | |
self.sd = torch.load(checkpoint[0], map_location='cpu') | |
self.key_list = list(self.sd.keys()) | |
self.load_model_with_checkpoint(self.module) | |
for i in range(1, len(checkpoint)): | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
print(f"loading checkpoint ({i})") | |
self.sd = torch.load(checkpoint[i], map_location=get_accelerator().device_name()) | |
self.key_list = list(self.sd.keys()) | |
self.load_model_with_checkpoint(self.module) | |
else: | |
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank() | |
load_path, checkpoint, quantize_config = sd_loader.load(self._config.tensor_parallel.tp_size, | |
mp_rank, | |
is_pipe_parallel=is_pipe_parallel, | |
quantize=(self._config.dtype is torch.int8), | |
quantize_groups=self.quantize_groups, | |
mlp_extra_grouping=self.mlp_extra_grouping) | |
self.quantization_scales, self.quantize_merge_count = quantize_config | |
moe, _ = has_moe_layers(self.module) | |
if moe: | |
from deepspeed.runtime.engine import DeepSpeedEngine | |
old_moe_load = False | |
if not isinstance(checkpoint['num_experts'], list): | |
old_moe_load = True | |
DeepSpeedEngine.load_moe_state_dict(load_dir, | |
tag, | |
state_dict=checkpoint[self._choose_module_key(checkpoint)], | |
old_moe_load=old_moe_load, | |
model=self.module, | |
mpu=self.mpu, | |
checkpoint_engine=self.checkpoint_engine) | |
self.module.load_state_dict(state_dict=checkpoint[self._choose_module_key(checkpoint)], | |
strict=load_module_strict) | |
def _choose_module_key(self, sd): | |
assert not ('module' in sd | |
and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed" | |
assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed" | |
if 'module' in sd: | |
return 'module' | |
elif 'model' in sd: | |
return 'model' | |
def _convert_to_dtype(self, config): | |
if not isinstance(self.module, torch.nn.Module): | |
return | |
if False: #config.dtype is torch.int8 and self.quantization_scales is None: | |
quantizer = WeightQuantization(mlp_extra_grouping=self.mlp_extra_grouping) | |
model, self.quantization_scales = quantizer.model_quantize(self.module, self.injection_dict, | |
self.quantize_bits, self.quantize_groups) | |
elif config.dtype == torch.half: | |
self.module.half() | |
elif config.dtype == torch.bfloat16: | |
self.module.bfloat16() | |
elif config.dtype == torch.float: | |
self.module.float() | |
def _create_cuda_graph(self, *inputs, **kwargs): | |
# warmup to create the workspace and cublas handle | |
cuda_stream = get_accelerator().Stream() | |
cuda_stream.wait_stream(get_accelerator().current_stream()) | |
with get_accelerator().stream(cuda_stream): | |
for i in range(3): | |
ret = self.module(*inputs, **kwargs) | |
get_accelerator().current_stream().wait_stream(cuda_stream) | |
# create cuda_graph and assign static_inputs and static_outputs | |
self._cuda_graphs = get_accelerator().create_graph() | |
self.static_inputs = inputs | |
self.static_kwargs = kwargs | |
with get_accelerator().capture_to_graph(self._cuda_graphs): | |
self.static_output = self.module(*self.static_inputs, **self.static_kwargs) | |
self.cuda_graph_created = True | |
def _graph_replay(self, *inputs, **kwargs): | |
for i in range(len(inputs)): | |
if torch.is_tensor(inputs[i]): | |
self.static_inputs[i].copy_(inputs[i]) | |
for k in kwargs: | |
if torch.is_tensor(kwargs[k]): | |
self.static_kwargs[k].copy_(kwargs[k]) | |
get_accelerator().replay_graph(self._cuda_graphs) | |
return self.static_output | |
def model_times(self): | |
assert self.model_profile_enabled, "model profiling is not enabled" | |
model_times = self._model_times | |
if self._config.enable_cuda_graph and len(self._model_times) == 0: | |
raise ValueError("Model times are empty and cuda graph is enabled. If " | |
"this is a GPT-style model this combo is not supported. If this is a " | |
"BERT-style model this is a bug, please report it. " | |
f"Model type is: {type(self.module)}") | |
self._model_times = [] | |
return model_times | |
def _module_match(self, module): | |
for policy in generic_policies: | |
policy = policy() | |
if policy.match_replaced(module): | |
return True | |
return False | |
def _local_cuda_graph_used(self, module): | |
if isinstance(module, torch.nn.Module): | |
return False | |
else: | |
sub_module_cuda_graph = False | |
for name in module.__dict__.keys(): | |
sub_module = getattr(module, name) | |
if self._module_match(sub_module) and hasattr(sub_module, "enable_cuda_graph"): | |
sub_module_cuda_graph = True | |
return sub_module_cuda_graph | |
def forward(self, *inputs, **kwargs): | |
"""Execute forward propagation | |
Arguments: | |
*inputs: Variable length input list | |
**kwargs: variable length keyword arguments | |
""" | |
start = None | |
if self.model_profile_enabled and get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph: | |
get_accelerator().synchronize() | |
start = time.time() | |
if get_accelerator().device_name() == 'cuda' and self._config.enable_cuda_graph and not self.local_cuda_graph: | |
if self.cuda_graph_created: | |
outputs = self._graph_replay(*inputs, **kwargs) | |
else: | |
self._create_cuda_graph(*inputs, **kwargs) | |
outputs = self._graph_replay(*inputs, **kwargs) | |
else: | |
outputs = self.module(*inputs, **kwargs) | |
if self.model_profile_enabled and self._config.enable_cuda_graph: | |
get_accelerator().synchronize() | |
duration = (time.time() - start) * 1e3 # convert seconds to ms | |
self._model_times.append(duration) | |
return outputs | |
def _generate(self, *inputs, **kwargs): | |
# Reset KV-cache at the beginning of generate | |
if hasattr(self.module, 'reset_cache'): | |
self.module.reset_cache() | |
num_beams = 1 | |
if "generation_config" in kwargs: | |
gen_config = kwargs["generation_config"] | |
num_beams = getattr(gen_config, "num_beams", 1) | |
if "num_beams" in kwargs: | |
num_beams = kwargs["num_beams"] | |
if num_beams > 1: | |
raise NotImplementedError("DeepSpeed does not support `num_beams` > 1, if this is important to you please " | |
"add your request to: https://github.com/microsoft/DeepSpeed/issues/2506") | |
if ("input_ids" in kwargs) and (kwargs["input_ids"].dim() == 2): | |
for input_tensor in kwargs["input_ids"]: | |
tensor_length = input_tensor.shape[-1] | |
if tensor_length > self._config.max_out_tokens: | |
raise RuntimeError( | |
f"Input with size {tensor_length} exceeds maximum length of {self._config.max_out_tokens}. Please increase `max_tokens` in the DeepSpeed Inference Config." | |
) | |
return self.module.generate(*inputs, **kwargs) | |