peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/quantization
/layers.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import torch | |
from torch import nn | |
from torch import Tensor | |
from torch.nn import functional as F | |
from .utils import Quantizer, DeQuantizer, concat_to_compat_param | |
from typing import Tuple, Callable, Dict | |
from deepspeed.runtime.zero import register_external_parameter | |
quantized_weight_registry = {} | |
is_zero3_enabled = False | |
# deal with weight sharing | |
def get_quantized_weight_wrapper(model, pre_quant_weight: nn.Parameter, quantize_weight_fn: Callable) -> nn.Parameter: | |
if id(pre_quant_weight) in quantized_weight_registry: | |
compat_tensor = quantized_weight_registry[id(pre_quant_weight)] | |
if is_zero3_enabled: | |
register_external_parameter(model, compat_tensor) | |
return quantized_weight_registry[id(pre_quant_weight)] | |
else: | |
quantized_weights, quant_scale, quant_min = quantize_weight_fn() | |
quantized_weight_registry[id(pre_quant_weight)] = concat_to_compat_param(quantized_weights, quant_scale, | |
quant_min) | |
return quantized_weight_registry[id(pre_quant_weight)] | |
def get_quantize_weight_fn(quantizer: Quantizer, pre_quant_weight: nn.Parameter) -> Callable: | |
def func() -> Tuple[nn.Parameter, Tensor, Tensor]: | |
quantized_weights, quant_scale, quant_min = quantizer.quantize(pre_quant_weight.data) | |
# A temporary hack as zero Zero3 assume all model weights has the same type. in all_gather_coalesced.get_only_unique_item | |
quantized_weights = quantized_weights.view(pre_quant_weight.dtype) | |
quant_scale = quant_scale.type(pre_quant_weight.dtype) | |
quant_min = quant_min.type(pre_quant_weight.dtype) | |
return quantized_weights, quant_scale, quant_min | |
return func | |
class QuantizedLinear(nn.Linear): | |
def __init__(self, config: Dict, pre_quant_layer: nn.Linear) -> None: | |
super(QuantizedLinear, self).__init__(in_features=pre_quant_layer.in_features, | |
out_features=pre_quant_layer.out_features, | |
bias=pre_quant_layer.bias is not None, | |
device=pre_quant_layer.weight.device, | |
dtype=pre_quant_layer.weight.dtype) | |
self.config = config | |
self.quantizer = Quantizer(config=config) | |
self.bias = pre_quant_layer.bias | |
self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight, | |
get_quantize_weight_fn(self.quantizer, pre_quant_layer.weight)) | |
self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype) | |
def forward(self, input: Tensor) -> Tensor: | |
quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight) | |
temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale, | |
quant_min) | |
# !!! Do not use torch.functional.linear(input, temp_dequantized_weight, self.bias) here as in zero3 torch.functional.linear is | |
# replaced by LinearFunctionForZeroStage3. Which assume weight is non-temporary. | |
# If weight is temp buffer there will be memory leak. | |
return torch._C._nn.linear(input, temp_dequantized_weight, self.bias) | |
class QuantizedEmbedding(nn.Embedding): | |
def __init__(self, config: Dict, pre_quant_layer: nn.Embedding) -> None: | |
super(QuantizedEmbedding, self).__init__(num_embeddings=pre_quant_layer.num_embeddings, | |
embedding_dim=pre_quant_layer.embedding_dim, | |
padding_idx=pre_quant_layer.padding_idx, | |
max_norm=pre_quant_layer.max_norm, | |
norm_type=pre_quant_layer.norm_type, | |
scale_grad_by_freq=pre_quant_layer.scale_grad_by_freq, | |
sparse=pre_quant_layer.sparse, | |
_weight=pre_quant_layer.weight, | |
device=pre_quant_layer.weight.device, | |
dtype=pre_quant_layer.weight.dtype) | |
assert pre_quant_layer.max_norm is None, 'Not supported' | |
assert pre_quant_layer.norm_type == 2, 'Not supported' | |
assert pre_quant_layer.scale_grad_by_freq == False, 'Not supported' | |
assert pre_quant_layer.sparse == False, 'Not supported' | |
self.config = config | |
quantizer = Quantizer(config=config) | |
self.weight = get_quantized_weight_wrapper(self, pre_quant_layer.weight, | |
get_quantize_weight_fn(quantizer, pre_quant_layer.weight)) | |
self.weight.dequantizer = DeQuantizer(config, pre_quant_layer.weight.dtype) | |
def forward(self, input: Tensor) -> Tensor: | |
quantized_weight, quant_scale, quant_min = self.weight.deconcat(self.weight) | |
temp_dequantized_weight = self.weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale, | |
quant_min) | |
return F.embedding(input, temp_dequantized_weight, self.padding_idx, self.max_norm, self.norm_type, | |
self.scale_grad_by_freq, self.sparse) | |
QUANTIZATION_LAYER_MAPPINGS = { | |
nn.Linear: QuantizedLinear, | |
nn.Embedding: QuantizedEmbedding, | |
} | |