peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/v2
/engine_v2.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import os | |
import json | |
import pickle | |
from typing import Iterable, Tuple | |
import torch | |
import deepspeed.comm as dist | |
from deepspeed.accelerator import get_accelerator | |
from deepspeed.comm.comm import init_distributed | |
from .model_implementations import InferenceV2Policy | |
from .logging import inference_logger | |
from .ragged import DSStateManager, RaggedBatchWrapper, PlaceholderSequenceDescriptor | |
from .scheduling_utils import SchedulingError, SchedulingResult | |
from .model_implementations.flat_model_helpers import make_param_filename, make_metadata_filename | |
from .model_implementations.inference_model_base import DSInferenceModelBase | |
from .config_v2 import RaggedInferenceEngineConfig | |
INFERENCE_MODEL_TIMER = "model-forward-inference" | |
class InferenceEngineV2: | |
_config: RaggedInferenceEngineConfig | |
""" | |
Configuration of the inference engine. | |
""" | |
_model: DSInferenceModelBase | |
""" | |
Inference model supporting ragged inference. | |
""" | |
_state_manager: DSStateManager | |
""" | |
Persistent state manager for sequences and KV-cache. | |
""" | |
def free_blocks(self) -> torch.Tensor: | |
""" | |
Number of free KV blocks. This is a tensor of shape [n_kv_cache_groups] where each | |
element is the number of free blocks in the corresponding KV cache group. | |
""" | |
return self._state_manager.free_blocks | |
def n_kv_cache_groups(self) -> int: | |
""" | |
Number of KV cache groups. | |
""" | |
return self._state_manager.n_kv_cache_groups | |
def model(self) -> DSInferenceModelBase: | |
""" | |
The model implementation. | |
""" | |
return self._model | |
def __init__(self, policy: InferenceV2Policy, engine_config: RaggedInferenceEngineConfig) -> None: | |
""" | |
Create the Inference V2 engine. | |
Arguments: | |
policy (InferenceV2Policy): Policy for the model implementation. This policy object | |
will be used to build the model and load the checkpoint associated with it. | |
engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine. | |
""" | |
self._config = engine_config | |
self._policy = policy | |
self._base_mp_group = self._initialize_tp_group() | |
# Build model from policy | |
inference_logger().info("Building model...") | |
self._model = self._policy.build_model(self._config, self._base_mp_group) | |
inference_logger().info("Model built.") | |
# Create state manager | |
self._batch = RaggedBatchWrapper(self._config.state_manager) | |
self._state_manager = DSStateManager(self._config.state_manager, | |
self._model.kv_cache_config(), | |
base_mp_group=self._base_mp_group) | |
self._model.set_state_manager(self._state_manager) | |
def _initialize_tp_group(self): | |
""" | |
Implementation of our TP group initialization. | |
""" | |
init_distributed() | |
local_rank = int(os.getenv("LOCAL_RANK", 0)) | |
get_accelerator().set_device(local_rank) | |
if local_rank >= self._config.tensor_parallel.tp_size: | |
raise RuntimeError("Local rank is greater than TP size, ensure that the TP config is correct.") | |
ranks = list(range(self._config.tensor_parallel.tp_size)) | |
return dist.new_group(ranks=ranks) | |
def put(self, | |
batch_uids: Iterable[int], | |
batch_tokens: Iterable[torch.Tensor], | |
do_checks: bool = True) -> torch.Tensor: | |
""" | |
Put a ragged batch onto the inference engine. This will perform one forward and return | |
a Tensor of the shape [len(batch_uids), *output_shape]. Logits for the non-final tokens | |
are not calculated. | |
Arguments: | |
batch_uids: Iterable of uids for the batch on the host | |
batch_tokens: Iterable of token tensors for the batch on the host | |
do_checks: Check schedulability when it is set to True. You can skip this check for better performance when it has already been completed. | |
""" | |
if do_checks: | |
token_lens = [len(tokens) for tokens in batch_tokens] | |
schedule_check = self.can_schedule(batch_uids, token_lens) | |
if schedule_check != SchedulingResult.Success: | |
raise SchedulingError(schedule_check) | |
self._batch.clear() | |
for uid, tokens in zip(batch_uids, batch_tokens): | |
host_seq_desc = self._state_manager.get_or_create_sequence(uid) | |
self._model.maybe_allocate_kv(host_seq_desc, tokens.numel()) | |
host_seq_desc.pre_forward(tokens.numel()) | |
# We can disable checks since we already validated schedulability. | |
self._batch.insert_sequence(host_seq_desc, tokens, do_checks=do_checks) | |
# Send all metadata to the device | |
self._batch.finalize() | |
# Prep all data structures for the actual forward (in anticipation of CG in the future) | |
# and also to amortize some of the costs in a more straightforward way. | |
self._model.prepare_batch(self._batch) | |
# Model implementation will pick up in the forward. | |
logits = self._model.forward(self._batch) | |
# We return one set of logits per sequence in the batch (saves cost on unembedding) | |
assert logits.shape[0] == self._batch.current_sequences | |
for uid in batch_uids: | |
host_seq_desc = self._state_manager.get_sequence(uid) | |
host_seq_desc.post_forward() # Updates sequence metadata. | |
self._model.maybe_free_kv(host_seq_desc) | |
return logits | |
def query(self, uid: int, max_request_tokens: int, max_request_blocks) -> Tuple[int, torch.Tensor]: | |
""" | |
Determine the number of tokens and KV blocks to reserve for a given request. Given a UID | |
(this UID may not be recognized by the model yet), this will return the number of tokens | |
and blocks to reserve for the request. | |
Arguments: | |
uid (int): The UID of the sequence (as tracked by the scheduling entity). If | |
this is a new sequence (with a UID unknown to the inference engine), then | |
an empty placeholder is created to pass to the occupancy logic. | |
n_tokens (int): The number of tokens to hypothetically send. | |
Returns: | |
Tuple[int, Optional[int]]: Tuple of free kv blocks and the number of blocks | |
required to schedule the sequence. | |
""" | |
seq_desc = self._state_manager.get_sequence(uid) | |
if seq_desc is None: | |
if (self._state_manager.n_tracked_sequences == self._config.state_manager.max_tracked_sequences): | |
return (0, 0) | |
seq_desc = PlaceholderSequenceDescriptor() | |
req_tokens, req_blocks = self._model.get_kv_requirements(seq_desc, max_request_tokens, max_request_blocks) | |
return (req_tokens, req_blocks) | |
def can_schedule(self, uids: Iterable[int], lengths: Iterable[int]) -> SchedulingResult: | |
""" | |
Dry run a batch to determine if it can be scheduled. Placeholder sequences will be | |
created for any UIDs that are unknown to the inference engine. | |
Arguments: | |
uids (Iterable[int]): Iterable of UIDs for the batch | |
lengths (Iterable[int]): Iterable of lengths for each sequence of the batch. This lengths | |
corresponds to the number of tokens to send in the hypothetical forward; history | |
tokens will be determined via UID lookup and future tokens are disregarded. | |
Returns: | |
bool: True if the batch can be scheduled, False otherwise. | |
""" | |
cur_seqs = self._state_manager.n_tracked_sequences | |
free_blocks = self._state_manager.free_blocks | |
req_blocks = 0 | |
batch_len = 0 | |
if len(uids) > self._config.state_manager.max_ragged_sequence_count: | |
# Can only compose a batch from a limited number of sequences | |
return SchedulingResult.BatchSequenceLimitExceeded | |
for uid, length in zip(uids, lengths): | |
seq_desc = self._state_manager.get_sequence(uid) | |
if seq_desc is None: | |
cur_seqs += 1 | |
seq_desc = PlaceholderSequenceDescriptor() | |
sched_len, sched_blocks = self._model.get_kv_requirements(seq_desc, length, free_blocks) | |
if sched_len != length: | |
# We ran out of KV cache | |
return SchedulingResult.KVCacheLimitExceeded | |
batch_len += length | |
free_blocks -= sched_blocks | |
if cur_seqs > self._config.state_manager.max_tracked_sequences: | |
# Would run out of tracking metadata | |
return SchedulingResult.EngineSequenceLimitExceeded | |
if batch_len > self._config.state_manager.max_ragged_batch_size: | |
# Would exceed the maximum batch size | |
return SchedulingResult.BatchTokenLimitExceeded | |
return SchedulingResult.Success | |
def get_remaining_block_capacity(self, uid: int) -> int: | |
""" | |
Get the remaining capacity of the last block already allocated. | |
""" | |
seq_desc = self._state_manager.get_sequence(uid) | |
if seq_desc is None: | |
return 0 | |
return self._model.get_remaining_block_capacity(seq_desc) | |
def flush(self, uid: int) -> None: | |
""" | |
Remove all state associated with a sequence from the inference engine. | |
Arguments: | |
uid (int): The UID of the sequence to flush. | |
""" | |
self._state_manager.flush_sequence(uid) | |
def serialize(self, save_path: str) -> None: | |
""" | |
Serialize the model to a file. | |
Arguments: | |
path (str): Path to the file to serialize to. | |
""" | |
param_file_name = make_param_filename(save_path, self._model.tp_rank, self._model.tp_size) | |
metadata_file_name = make_metadata_filename(save_path, self._model.tp_rank, self._model.tp_size) | |
# Save the flattened parameters | |
torch.save(self._model.flattened_params, param_file_name) | |
json.dump(self._model.flattened_param_metadata.json(), open(metadata_file_name, "w")) | |
if self._model.tp_rank == 0: | |
pickle.dump(self._model._config, open(os.path.join(save_path, "ds_model_config.pkl"), "wb")) | |