peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/v2
/inference_utils.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
from typing import Dict | |
import torch | |
from enum import Enum, IntEnum | |
class NormTypeEnum(Enum): | |
LayerNorm: str = "layer_norm" | |
RMSNorm: str = "rms_norm" | |
class DtypeEnum(Enum): | |
# The torch dtype must always be the first value (so we return torch.dtype) | |
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" | |
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" | |
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat" | |
int8 = torch.int8, "torch.int8", "int8" | |
# Copied from https://stackoverflow.com/a/43210118 | |
# Allows us to use multiple values for each Enum index and returns first | |
# listed value when Enum is called | |
def __new__(cls, *values): | |
obj = object.__new__(cls) | |
# first value is canonical value | |
obj._value_ = values[0] | |
for other_value in values[1:]: | |
cls._value2member_map_[other_value] = obj | |
obj._all_values = values | |
return obj | |
def __repr__(self): | |
return "<%s.%s: %s>" % ( | |
self.__class__.__name__, | |
self._name_, | |
", ".join([repr(v) for v in self._all_values]), | |
) | |
ELEM_SIZES: Dict[torch.dtype, int] = { | |
torch.float16: 2, | |
torch.bfloat16: 2, | |
torch.float32: 4, | |
torch.float64: 8, | |
torch.int8: 1, | |
torch.uint8: 1, | |
torch.int16: 2, | |
torch.int32: 4, | |
torch.int64: 8, | |
torch.bool: 1, | |
} | |
class ActivationType(IntEnum): | |
""" | |
Types of activations supported by DS-Inference | |
""" | |
GELU = 0 | |
RELU = 1 | |
SILU = 2 | |
GEGLU = 3 | |
ReGLU = 4 | |
SiGLU = 5 | |
IDENTITY = 6 | |
InvalidType = -1 | |
def is_gated(act_fn: ActivationType) -> bool: | |
""" | |
Return True if the given activation function is gated. | |
""" | |
if not isinstance(act_fn, ActivationType): | |
act_fn = ActivationType(act_fn) | |
return act_fn in [ActivationType.GEGLU, ActivationType.ReGLU, ActivationType.SiGLU] | |
def elem_size(dtype: torch.dtype) -> int: | |
""" | |
Return size in bytes of the given dtype. | |
""" | |
try: | |
return ELEM_SIZES[dtype] | |
except KeyError: | |
raise ValueError("Unknown dtype size for {}".format(dtype)) | |
def ceil_div(a: int, b: int) -> int: | |
""" | |
Return ceil(a / b). | |
""" | |
return -(-a // b) | |