|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from deepspeed.accelerator import get_accelerator |
|
from ..features.cuda_graph import CUDAGraph |
|
|
|
|
|
class DSVAE(CUDAGraph, torch.nn.Module): |
|
|
|
def __init__(self, vae, enable_cuda_graph=True): |
|
super().__init__(enable_cuda_graph=enable_cuda_graph) |
|
self.vae = vae |
|
self.config = vae.config |
|
self.device = self.vae.device |
|
self.dtype = self.vae.dtype |
|
self.vae.requires_grad_(requires_grad=False) |
|
self.decoder_cuda_graph_created = False |
|
self.encoder_cuda_graph_created = False |
|
self.all_cuda_graph_created = False |
|
|
|
def _graph_replay_decoder(self, *inputs, **kwargs): |
|
for i in range(len(inputs)): |
|
if torch.is_tensor(inputs[i]): |
|
self.static_decoder_inputs[i].copy_(inputs[i]) |
|
for k in kwargs: |
|
if torch.is_tensor(kwargs[k]): |
|
self.static_decoder_kwargs[k].copy_(kwargs[k]) |
|
get_accelerator().replay_graph(self._decoder_cuda_graph) |
|
return self.static_decoder_output |
|
|
|
def _decode(self, x, return_dict=True, generator=None): |
|
return self.vae.decode(x, return_dict=return_dict) |
|
|
|
def _create_cuda_graph_decoder(self, *inputs, **kwargs): |
|
|
|
cuda_stream = torch.cuda.Stream() |
|
cuda_stream.wait_stream(torch.cuda.current_stream()) |
|
with torch.cuda.stream(cuda_stream): |
|
for i in range(3): |
|
ret = self._decode(*inputs, **kwargs) |
|
torch.cuda.current_stream().wait_stream(cuda_stream) |
|
|
|
|
|
self._decoder_cuda_graph = get_accelerator().create_graph() |
|
self.static_decoder_inputs = inputs |
|
self.static_decoder_kwargs = kwargs |
|
|
|
with get_accelerator().capture_to_graph(self._decoder_cuda_graph): |
|
self.static_decoder_output = self._decode(*self.static_decoder_inputs, **self.static_decoder_kwargs) |
|
|
|
self.decoder_cuda_graph_created = True |
|
|
|
def decode(self, *inputs, **kwargs): |
|
if self.enable_cuda_graph: |
|
if self.decoder_cuda_graph_created: |
|
outputs = self._graph_replay_decoder(*inputs, **kwargs) |
|
else: |
|
self._create_cuda_graph_decoder(*inputs, **kwargs) |
|
outputs = self._graph_replay_decoder(*inputs, **kwargs) |
|
return outputs |
|
else: |
|
return self._decode(*inputs, **kwargs) |
|
|
|
def _graph_replay_encoder(self, *inputs, **kwargs): |
|
for i in range(len(inputs)): |
|
if torch.is_tensor(inputs[i]): |
|
self.static_encoder_inputs[i].copy_(inputs[i]) |
|
for k in kwargs: |
|
if torch.is_tensor(kwargs[k]): |
|
self.static_encoder_kwargs[k].copy_(kwargs[k]) |
|
get_accelerator().replay_graph(self._encoder_cuda_graph) |
|
return self.static_encoder_output |
|
|
|
def _encode(self, x, return_dict=True): |
|
return self.vae.encode(x, return_dict=return_dict) |
|
|
|
def _create_cuda_graph_encoder(self, *inputs, **kwargs): |
|
|
|
cuda_stream = torch.cuda.Stream() |
|
cuda_stream.wait_stream(torch.cuda.current_stream()) |
|
with torch.cuda.stream(cuda_stream): |
|
for i in range(3): |
|
ret = self._encode(*inputs, **kwargs) |
|
torch.cuda.current_stream().wait_stream(cuda_stream) |
|
|
|
|
|
self._encoder_cuda_graph = get_accelerator().create_graph() |
|
self.static_encoder_inputs = inputs |
|
self.static_encoder_kwargs = kwargs |
|
|
|
with get_accelerator().capture_to_graph(self._encoder_cuda_graph): |
|
self.static_encoder_output = self._encode(*self.static_encoder_inputs, **self.static_encoder_kwargs) |
|
|
|
self.encoder_cuda_graph_created = True |
|
|
|
def encode(self, *inputs, **kwargs): |
|
if self.enable_cuda_graph: |
|
if self.encoder_cuda_graph_created: |
|
outputs = self._graph_replay_encoder(*inputs, **kwargs) |
|
else: |
|
self._create_cuda_graph_encoder(*inputs, **kwargs) |
|
outputs = self._graph_replay_encoder(*inputs, **kwargs) |
|
return outputs |
|
else: |
|
return self._encode(*inputs, **kwargs) |
|
|
|
def _graph_replay(self, *inputs, **kwargs): |
|
for i in range(len(inputs)): |
|
if torch.is_tensor(inputs[i]): |
|
self.static_inputs[i].copy_(inputs[i]) |
|
for k in kwargs: |
|
if torch.is_tensor(kwargs[k]): |
|
self.static_kwargs[k].copy_(kwargs[k]) |
|
get_accelerator().replay_graph(self._all_cuda_graph) |
|
return self.static_output |
|
|
|
def forward(self, *inputs, **kwargs): |
|
if self.enable_cuda_graph: |
|
if self.cuda_graph_created: |
|
outputs = self._graph_replay(*inputs, **kwargs) |
|
else: |
|
self._create_cuda_graph(*inputs, **kwargs) |
|
outputs = self._graph_replay(*inputs, **kwargs) |
|
return outputs |
|
else: |
|
return self._forward(*inputs, **kwargs) |
|
|
|
def _create_cuda_graph(self, *inputs, **kwargs): |
|
|
|
cuda_stream = torch.cuda.Stream() |
|
cuda_stream.wait_stream(torch.cuda.current_stream()) |
|
with torch.cuda.stream(cuda_stream): |
|
for i in range(3): |
|
ret = self._forward(*inputs, **kwargs) |
|
torch.cuda.current_stream().wait_stream(cuda_stream) |
|
|
|
|
|
self._all_cuda_graph = get_accelerator().create_graph() |
|
self.static_inputs = inputs |
|
self.static_kwargs = kwargs |
|
|
|
with get_accelerator().capture_to_graph(self._all_cuda_graph): |
|
self.static_output = self._forward(*self.static_inputs, **self.static_kwargs) |
|
|
|
self.all_cuda_graph_created = True |
|
|
|
def _forward(self, sample, timestamp, encoder_hidden_states, return_dict=True): |
|
return self.vae(sample, timestamp, encoder_hidden_states, return_dict) |
|
|