|
|
|
|
|
|
|
|
|
|
|
from .base import * |
|
from .features.meta_tensor import MetaTensorContainer |
|
from .features.split_qkv import HybridSplitQKVContainer |
|
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference |
|
import torch |
|
from torch.nn.parameter import Parameter |
|
from ..policy import TransformerPolicy |
|
from ..policy import transformer_param_names |
|
from ..policy import maybe_copy |
|
from ..policy import maybe_copy_qkv |
|
|
|
from ..policy import maybe_get_lora |
|
|
|
|
|
class DS_GPTJContainer(MetaTensorContainer, HybridSplitQKVContainer, BaseTransformerContainer): |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
def create_module(self, config=None): |
|
_config = config if config is not None else self.ds_model_config |
|
self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) |
|
self.module.config.scale_attention = self.scale_attention |
|
return self.module |
|
|
|
def set_lora_params(self): |
|
""" |
|
Necessary to implement for `HybridEngineContainer` |
|
""" |
|
self.lora_params = [ |
|
maybe_get_lora(p) for p in [ |
|
self.policy.client_module.mlp.fc_in, self.policy.client_module.mlp.fc_out, |
|
self.policy.client_module.attn.q_proj, self.policy.client_module.attn.k_proj, |
|
self.policy.client_module.attn.v_proj, self.policy.client_module.attn.out_proj |
|
] |
|
] |
|
|
|
def get_lora_matched_pair(self): |
|
fc1_lora, fc2_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params() |
|
ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (out_lora, self.dense_w), (q_lora, self.qw), |
|
(k_lora, self.kw), (v_lora, self.vw)] |
|
return ret |
|
|
|
def set_q_k_v(self): |
|
""" |
|
Necessary to implement for `HybridSplitQKVContainer` |
|
""" |
|
self.qw = self.policy.client_module.attn.q_proj.weight |
|
self.qb = None |
|
self.kw = self.policy.client_module.attn.k_proj.weight |
|
self.kb = None |
|
self.vw = self.policy.client_module.attn.v_proj.weight |
|
self.vb = None |
|
|
|
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): |
|
param_names = ( |
|
'attn.q_proj.weight', \ |
|
'attn.k_proj.weight', \ |
|
'attn.v_proj.weight', \ |
|
'attn.out_proj.weight', \ |
|
'mlp.fc_in.weight', \ |
|
'mlp.fc_in.bias', \ |
|
'mlp.fc_out.weight', \ |
|
'mlp.fc_out.bias', \ |
|
'ln_1.weight', \ |
|
'ln_1.bias' |
|
) |
|
maybe_copy_qkv(module.attention, |
|
sd, |
|
weight_quantizer, |
|
mp_replace, |
|
'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]], |
|
split_qkv=self.policy.split_qkv) |
|
for i in range(3, 4): |
|
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1], |
|
prefix + param_names[i]) |
|
for i in range(4, 8): |
|
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i], |
|
prefix + param_names[i]) |
|
for i in range(8, 10): |
|
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i + 2], |
|
prefix + param_names[i]) |
|
|
|
|
|
class HFGPTJLayerPolicy(TransformerPolicy): |
|
_orig_layer_class = None |
|
|
|
def __init__(self, client_module, inference=True): |
|
super().__init__(inference, scale_attention=True) |
|
self.client_module = client_module |
|
try: |
|
import transformers |
|
HFGPTJLayerPolicy._orig_layer_class = transformers.models.gptj.modeling_gptj.GPTJBlock |
|
except: |
|
HFGPTJLayerPolicy._orig_layer_class = None |
|
|
|
def get_hidden_heads(self): |
|
return self.client_module.attn.embed_dim, \ |
|
self.client_module.attn.num_attention_heads, \ |
|
self.client_module.ln_1.eps, \ |
|
DEFAULT_INTERMEDIATE_SIZE |
|
|
|
def attention(self, enable_training=False): |
|
qw = self.client_module.attn.q_proj.weight |
|
kw = self.client_module.attn.k_proj.weight |
|
vw = self.client_module.attn.v_proj.weight |
|
|
|
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) |
|
|
|
return qkvw, \ |
|
None, \ |
|
self.client_module.attn.out_proj.weight, \ |
|
None, |
|
|
|
def mlp(self, enable_training=False): |
|
return self.client_module.mlp.fc_in.weight, \ |
|
self.client_module.mlp.fc_in.bias, \ |
|
self.client_module.mlp.fc_out.weight, \ |
|
self.client_module.mlp.fc_out.bias |
|
|
|
def layernorm(self): |
|
return None, \ |
|
None, \ |
|
self.client_module.ln_1.weight, \ |
|
self.client_module.ln_1.bias |
|
|