applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
raw
history blame
5.79 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .base import *
from .features.meta_tensor import MetaTensorContainer
from .features.split_qkv import HybridSplitQKVContainer
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
import torch
from torch.nn.parameter import Parameter
from ..policy import TransformerPolicy
from ..policy import transformer_param_names
from ..policy import maybe_copy
from ..policy import maybe_copy_qkv
from ..policy import maybe_get_lora
class DS_GPTNEOContainer(MetaTensorContainer, HybridSplitQKVContainer, BaseTransformerContainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# All model specific things should be defined here instead of the base class.
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group)
self.module.config.scale_attention = self.scale_attention
return self.module
def set_lora_params(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
self.lora_params = [
maybe_get_lora(p) for p in [
self.policy.client_module.mlp.c_fc, self.policy.client_module.mlp.c_proj,
self.policy.client_module.attn.attention.q_proj, self.policy.client_module.attn.attention.k_proj,
self.policy.client_module.attn.attention.v_proj, self.policy.client_module.attn.attention.out_proj
]
]
def set_q_k_v(self):
"""
Necessary to implement for `HybridSplitQKVContainer`
"""
self.qw = self.policy.client_module.attn.attention.q_proj.weight
self.qb = None
self.kw = self.policy.client_module.attn.attention.k_proj.weight
self.kb = None
self.vw = self.policy.client_module.attn.attention.v_proj.weight
self.vb = None
def get_lora_matched_pair(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
fc1_lora, fc2_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params()
ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (out_lora, self.dense_w), (q_lora, self.qw),
(k_lora, self.kw), (v_lora, self.vw)]
return ret
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
param_names = (
'attn.attention.q_proj.weight', \
'attn.attention.k_proj.weight', \
'attn.attention.v_proj.weight', \
'attn.attention.out_proj.weight', \
'attn.attention.out_proj.bias', \
'mlp.c_fc.weight', \
'mlp.c_fc.bias', \
'mlp.c_proj.weight', \
'mlp.c_proj.bias', \
'ln_2.weight', \
'ln_2.bias', \
'ln_1.weight', \
'ln_1.bias'
)
maybe_copy_qkv(module.attention,
sd,
weight_quantizer,
mp_replace,
'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]],
split_qkv=self.policy.split_qkv)
for i in range(3, 5):
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1],
prefix + param_names[i])
for i in range(5, 11):
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1],
prefix + param_names[i])
for i in range(11, 13):
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1],
prefix + param_names[i])
class HFGPTNEOLayerPolicy(TransformerPolicy):
def __init__(self, client_module, inference=True):
super().__init__(inference, scale_attention=False)
self.client_module = client_module
try:
import transformers
HFGPTNEOLayerPolicy._orig_layer_class = transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoBlock
except:
HFGPTNEOLayerPolicy._orig_layer_class = None
def get_hidden_heads(self):
return self.client_module.attn.attention.embed_dim, \
self.client_module.attn.attention.num_heads, \
self.client_module.ln_1.eps, \
DEFAULT_INTERMEDIATE_SIZE
def get_q_k_v(self):
return self.client_module.attn.attention.q_proj.weight, \
None, \
self.client_module.attn.attention.k_proj.weight, \
None, \
self.client_module.attn.attention.v_proj.weight, \
None
def attention(self, enable_training=False):
qw = self.client_module.attn.attention.q_proj.weight
kw = self.client_module.attn.attention.k_proj.weight
vw = self.client_module.attn.attention.v_proj.weight
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
return qkvw, \
None, \
self.client_module.attn.attention.out_proj.weight, \
self.client_module.attn.attention.out_proj.bias
def mlp(self, enable_training=False):
return self.client_module.mlp.c_fc.weight, \
self.client_module.mlp.c_fc.bias, \
self.client_module.mlp.c_proj.weight, \
self.client_module.mlp.c_proj.bias
def layernorm(self):
return self.client_module.ln_2.weight, \
self.client_module.ln_2.bias, \
self.client_module.ln_1.weight, \
self.client_module.ln_1.bias