peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/module_inject
/containers
/internlm.py
# Copyright (c) Microsoft Corporation. | |
# SPDX-License-Identifier: Apache-2.0 | |
# DeepSpeed Team | |
import importlib | |
import torch | |
from torch.nn.parameter import Parameter | |
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference | |
from deepspeed.utils.types import ActivationFuncType, NormType | |
from ..policy import (TransformerPolicy, maybe_copy, maybe_copy_geglu, maybe_copy_qkv, maybe_get_lora, | |
transformer_param_names) | |
from .base import * | |
from .features import HybridGatedMLPContainer, HybridSplitQKVContainer | |
class DS_InternLMContainer(HybridGatedMLPContainer, HybridSplitQKVContainer, BaseTransformerContainer): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
# All model specific things should be defined here instead of the base class. | |
def create_module(self, config=None): | |
_config = config if config is not None else self.ds_model_config | |
_config.rotate_half = True | |
_config.rotate_every_two = False | |
_config.rotary_dim = self.hidden_size // self.num_attention_heads | |
self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group) | |
return self.module | |
def set_lora_params(self): | |
""" | |
Necessary to implement for `HybridEngineContainer` | |
""" | |
self.lora_params = [ | |
maybe_get_lora(p) for p in [ | |
self.policy.client_module.mlp.up_proj.weight, self.policy.client_module.mlp.gate_proj.weight, | |
self.policy.client_module.mlp.down_proj.weight, self.policy.client_module.self_attn.q_proj.weight, | |
self.policy.client_module.self_attn.k_proj.weight, self.policy.client_module.self_attn.v_proj.weight, | |
self.policy.client_module.self_attn.o_proj.weight | |
] | |
] | |
def get_lora_matched_pair(self): | |
up_proj_lora, gate_proj_lora, down_proj_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params() | |
ret = [(up_proj_lora, self.inter_up_w), (gate_proj_lora, self.inter_gate_w), (down_proj_lora, self._4hh_w), | |
(out_lora, self.dense_w), (q_lora, self.qw), (k_lora, self.kw), (v_lora, self.vw)] | |
return ret | |
def set_q_k_v(self): | |
""" | |
Necessary to implement for `HybridSplitQKVContainer` | |
""" | |
self.qw = self.policy.client_module.self_attn.q_proj.weight | |
self.qb = self.policy.client_module.self_attn.q_proj.bias | |
self.kw = self.policy.client_module.self_attn.k_proj.weight | |
self.kb = self.policy.client_module.self_attn.k_proj.bias | |
self.vw = self.policy.client_module.self_attn.v_proj.weight | |
self.vb = self.policy.client_module.self_attn.v_proj.bias | |
def set_mlp_gate(self): | |
""" | |
Necessary to implement for `HybridGatedMLPContainer` | |
""" | |
self.inter_up_w = self.policy.client_module.mlp.up_proj.weight | |
self.inter_up_b = None | |
self.inter_gate_w = self.policy.client_module.mlp.gate_proj.weight | |
self.inter_gate_b = None | |
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix): | |
param_names = ( | |
'self_attn.q_proj.weight', \ | |
'self_attn.k_proj.weight', \ | |
'self_attn.v_proj.weight', \ | |
'self_attn.o_proj.weight', \ | |
'mlp.up_proj.weight', \ | |
'mlp.gate_proj.weight', \ | |
'mlp.down_proj.weight', \ | |
'input_layernorm.weight', \ | |
'post_attention_layernorm.weight' | |
'self_attn.q_proj.bias', \ | |
'self_attn.k_proj.bias', \ | |
'self_attn.v_proj.bias', \ | |
'self_attn.o_proj.bias', \ | |
) | |
maybe_copy_qkv(module.attention, | |
sd, | |
weight_quantizer, | |
mp_replace, | |
'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]], | |
split_qkv=self.policy.split_qkv) | |
maybe_copy_qkv(module.attention, | |
sd, | |
weight_quantizer, | |
mp_replace, | |
'attn_qkvb', [prefix + param_names[9], prefix + param_names[10], prefix + param_names[11]], | |
split_qkv=self.policy.split_qkv) | |
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[2], | |
prefix + param_names[3]) | |
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[3], | |
prefix + param_names[12]) | |
maybe_copy_geglu(module.mlp, sd, weight_quantizer, mp_replace, 'inter_w', | |
[prefix + param_names[4], prefix + param_names[5]]) | |
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, 'output_w', prefix + param_names[6]) | |
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[8], prefix + param_names[7]) | |
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[10], prefix + param_names[8]) | |
class InternLMLayerPolicy(TransformerPolicy): | |
_orig_layer_class = [] | |
_orig_layer_class_inited = False | |
def __init__(self, client_module, inference=True): | |
super().__init__( | |
inference, | |
mlp_act_func_type=ActivationFuncType.GATED_SILU, | |
norm_type=NormType.RMSNorm, | |
) | |
self.client_module = client_module | |
self._init_orig_layer_class_once() | |
def _init_orig_layer_class_once(self): | |
if InternLMLayerPolicy._orig_layer_class_inited: | |
return | |
for sub_pkg in ['', '.internlm-7b', '.internlm-chat-7b']: | |
try: | |
from transformers.utils import TRANSFORMERS_DYNAMIC_MODULE_NAME | |
module = importlib.import_module(f"{TRANSFORMERS_DYNAMIC_MODULE_NAME}{sub_pkg}.modeling_internlm") | |
if module.InternLMDecoderLayer not in InternLMLayerPolicy._orig_layer_class: | |
InternLMLayerPolicy._orig_layer_class.append(module.InternLMDecoderLayer) | |
except ImportError: | |
continue | |
InternLMLayerPolicy._orig_layer_class_inited = True | |
def get_hidden_heads(self): | |
return self.client_module.self_attn.q_proj.weight.shape[1], \ | |
self.client_module.self_attn.num_heads, \ | |
self.client_module.input_layernorm.variance_epsilon, \ | |
self.client_module.mlp.gate_proj.weight.shape[0] | |
def attention(self, enable_training=False): | |
qw = self.client_module.self_attn.q_proj.weight | |
kw = self.client_module.self_attn.k_proj.weight | |
vw = self.client_module.self_attn.v_proj.weight | |
qb = self.client_module.self_attn.q_proj.bias | |
kb = self.client_module.self_attn.k_proj.bias | |
vb = self.client_module.self_attn.v_proj.bias | |
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training) | |
qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training) | |
return qkvw, \ | |
qkvb, \ | |
self.client_module.self_attn.o_proj.weight, \ | |
self.client_module.self_attn.o_proj.bias | |
def mlp(self, enable_training=False): | |
mlp1_up = self.client_module.mlp.up_proj.weight | |
mlp1_gate = self.client_module.mlp.gate_proj.weight | |
mlp2 = self.client_module.mlp.down_proj.weight | |
mlp1 = Parameter(torch.cat((mlp1_up, mlp1_gate), dim=0), requires_grad=enable_training) | |
return mlp1, None, mlp2, None | |
def layernorm(self): | |
return self.client_module.post_attention_layernorm.weight, \ | |
None, \ | |
self.client_module.input_layernorm.weight, \ | |
None | |