applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
raw
history blame
7.76 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import importlib
import torch
from torch.nn.parameter import Parameter
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
from deepspeed.utils.types import ActivationFuncType, NormType
from ..policy import (TransformerPolicy, maybe_copy, maybe_copy_geglu, maybe_copy_qkv, maybe_get_lora,
transformer_param_names)
from .base import *
from .features import HybridGatedMLPContainer, HybridSplitQKVContainer
class DS_InternLMContainer(HybridGatedMLPContainer, HybridSplitQKVContainer, BaseTransformerContainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# All model specific things should be defined here instead of the base class.
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
_config.rotate_half = True
_config.rotate_every_two = False
_config.rotary_dim = self.hidden_size // self.num_attention_heads
self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group)
return self.module
def set_lora_params(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
self.lora_params = [
maybe_get_lora(p) for p in [
self.policy.client_module.mlp.up_proj.weight, self.policy.client_module.mlp.gate_proj.weight,
self.policy.client_module.mlp.down_proj.weight, self.policy.client_module.self_attn.q_proj.weight,
self.policy.client_module.self_attn.k_proj.weight, self.policy.client_module.self_attn.v_proj.weight,
self.policy.client_module.self_attn.o_proj.weight
]
]
def get_lora_matched_pair(self):
up_proj_lora, gate_proj_lora, down_proj_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params()
ret = [(up_proj_lora, self.inter_up_w), (gate_proj_lora, self.inter_gate_w), (down_proj_lora, self._4hh_w),
(out_lora, self.dense_w), (q_lora, self.qw), (k_lora, self.kw), (v_lora, self.vw)]
return ret
def set_q_k_v(self):
"""
Necessary to implement for `HybridSplitQKVContainer`
"""
self.qw = self.policy.client_module.self_attn.q_proj.weight
self.qb = self.policy.client_module.self_attn.q_proj.bias
self.kw = self.policy.client_module.self_attn.k_proj.weight
self.kb = self.policy.client_module.self_attn.k_proj.bias
self.vw = self.policy.client_module.self_attn.v_proj.weight
self.vb = self.policy.client_module.self_attn.v_proj.bias
def set_mlp_gate(self):
"""
Necessary to implement for `HybridGatedMLPContainer`
"""
self.inter_up_w = self.policy.client_module.mlp.up_proj.weight
self.inter_up_b = None
self.inter_gate_w = self.policy.client_module.mlp.gate_proj.weight
self.inter_gate_b = None
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
param_names = (
'self_attn.q_proj.weight', \
'self_attn.k_proj.weight', \
'self_attn.v_proj.weight', \
'self_attn.o_proj.weight', \
'mlp.up_proj.weight', \
'mlp.gate_proj.weight', \
'mlp.down_proj.weight', \
'input_layernorm.weight', \
'post_attention_layernorm.weight'
'self_attn.q_proj.bias', \
'self_attn.k_proj.bias', \
'self_attn.v_proj.bias', \
'self_attn.o_proj.bias', \
)
maybe_copy_qkv(module.attention,
sd,
weight_quantizer,
mp_replace,
'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]],
split_qkv=self.policy.split_qkv)
maybe_copy_qkv(module.attention,
sd,
weight_quantizer,
mp_replace,
'attn_qkvb', [prefix + param_names[9], prefix + param_names[10], prefix + param_names[11]],
split_qkv=self.policy.split_qkv)
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[2],
prefix + param_names[3])
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[3],
prefix + param_names[12])
maybe_copy_geglu(module.mlp, sd, weight_quantizer, mp_replace, 'inter_w',
[prefix + param_names[4], prefix + param_names[5]])
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, 'output_w', prefix + param_names[6])
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[8], prefix + param_names[7])
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[10], prefix + param_names[8])
class InternLMLayerPolicy(TransformerPolicy):
_orig_layer_class = []
_orig_layer_class_inited = False
def __init__(self, client_module, inference=True):
super().__init__(
inference,
mlp_act_func_type=ActivationFuncType.GATED_SILU,
norm_type=NormType.RMSNorm,
)
self.client_module = client_module
self._init_orig_layer_class_once()
def _init_orig_layer_class_once(self):
if InternLMLayerPolicy._orig_layer_class_inited:
return
for sub_pkg in ['', '.internlm-7b', '.internlm-chat-7b']:
try:
from transformers.utils import TRANSFORMERS_DYNAMIC_MODULE_NAME
module = importlib.import_module(f"{TRANSFORMERS_DYNAMIC_MODULE_NAME}{sub_pkg}.modeling_internlm")
if module.InternLMDecoderLayer not in InternLMLayerPolicy._orig_layer_class:
InternLMLayerPolicy._orig_layer_class.append(module.InternLMDecoderLayer)
except ImportError:
continue
InternLMLayerPolicy._orig_layer_class_inited = True
def get_hidden_heads(self):
return self.client_module.self_attn.q_proj.weight.shape[1], \
self.client_module.self_attn.num_heads, \
self.client_module.input_layernorm.variance_epsilon, \
self.client_module.mlp.gate_proj.weight.shape[0]
def attention(self, enable_training=False):
qw = self.client_module.self_attn.q_proj.weight
kw = self.client_module.self_attn.k_proj.weight
vw = self.client_module.self_attn.v_proj.weight
qb = self.client_module.self_attn.q_proj.bias
kb = self.client_module.self_attn.k_proj.bias
vb = self.client_module.self_attn.v_proj.bias
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training)
return qkvw, \
qkvb, \
self.client_module.self_attn.o_proj.weight, \
self.client_module.self_attn.o_proj.bias
def mlp(self, enable_training=False):
mlp1_up = self.client_module.mlp.up_proj.weight
mlp1_gate = self.client_module.mlp.gate_proj.weight
mlp2 = self.client_module.mlp.down_proj.weight
mlp1 = Parameter(torch.cat((mlp1_up, mlp1_gate), dim=0), requires_grad=enable_training)
return mlp1, None, mlp2, None
def layernorm(self):
return self.client_module.post_attention_layernorm.weight, \
None, \
self.client_module.input_layernorm.weight, \
None