applied-ai-018's picture
Add files using upload-large-folder tool
a5dc865 verified
raw
history blame
6.91 kB
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from .base import *
from .features import MetaTensorContainer, HybridSplitQKVContainer
from deepspeed.model_implementations.transformers.ds_opt import DeepSpeedOPTInference
import torch
from torch.nn.parameter import Parameter
from ..policy import TransformerPolicy
from ..policy import transformer_param_names
from ..policy import maybe_copy
from ..policy import maybe_copy_qkv
from ..policy import maybe_get_lora
from deepspeed.utils.types import ActivationFuncType
class DS_OPTContainer(MetaTensorContainer, HybridSplitQKVContainer, BaseTransformerContainer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# All model specific things should be defined here instead of the base class.
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
self.module = DeepSpeedOPTInference(_config, mp_group=self.mp_group)
self.module.config.scale_attention = self.scale_attention
return self.module
def set_lora_params(self):
"""
Necessary to implement for `HybridEngineContainer`
"""
self.lora_params = [
maybe_get_lora(p) for p in [
self.policy.client_module.fc1,
self.policy.client_module.fc2,
self.policy.client_module.self_attn.q_proj,
self.policy.client_module.self_attn.k_proj,
self.policy.client_module.self_attn.v_proj,
self.policy.client_module.self_attn.out_proj,
]
]
def set_q_k_v(self):
"""
Necessary to implement for `HybridSplitQKVContainer`
"""
self.qw = self.policy.client_module.self_attn.q_proj.weight
self.qb = self.policy.client_module.self_attn.q_proj.bias
self.kw = self.policy.client_module.self_attn.k_proj.weight
self.kb = self.policy.client_module.self_attn.k_proj.bias
self.vw = self.policy.client_module.self_attn.v_proj.weight
self.vb = self.policy.client_module.self_attn.v_proj.bias
def get_lora_matched_pair(self):
fc1_lora, fc2_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params()
ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (out_lora, self.dense_w), (q_lora, self.qw),
(k_lora, self.kw), (v_lora, self.vw)]
return ret
def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
param_names = (
'self_attn.q_proj.weight', \
'self_attn.k_proj.weight', \
'self_attn.v_proj.weight', \
'self_attn.q_proj.bias', \
'self_attn.k_proj.bias', \
'self_attn.v_proj.bias', \
'self_attn.out_proj.weight', \
'self_attn.out_proj.bias', \
'fc1.weight', \
'fc1.bias', \
'fc2.weight', \
'fc2.bias', \
'final_layer_norm.weight', \
'final_layer_norm.bias', \
'self_attn_layer_norm.weight', \
'self_attn_layer_norm.bias'
)
for i in range(0, 6, 3):
maybe_copy_qkv(module.attention,
sd,
weight_quantizer,
mp_replace,
transformer_param_names[i // 3],
[prefix + param_names[i], prefix + param_names[i + 1], prefix + param_names[i + 2]],
split_qkv=self.policy.split_qkv)
for i in range(6, 8):
maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4],
prefix + param_names[i])
for i in range(8, 14):
maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4],
prefix + param_names[i])
for i in range(14, 16):
maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i - 4],
prefix + param_names[i])
class HFOPTLayerPolicy(TransformerPolicy):
_orig_layer_class = None
def __init__(self, client_module, inference=True, use_load_prefix=True):
super().__init__(inference, linear_layer=True, pre_attn_norm=True, use_load_prefix=use_load_prefix)
self.client_module = client_module
try:
import transformers
HFOPTLayerPolicy._orig_layer_class = transformers.models.opt.modeling_opt.OPTDecoderLayer
except:
HFOPTLayerPolicy._orig_layer_class = None
if hasattr(TransformerPolicy, "hf_model_config") and hasattr(TransformerPolicy.hf_model_config,
"activation_function"):
if TransformerPolicy.hf_model_config.activation_function == "relu":
self.mlp_act_func_type = ActivationFuncType.ReLU
elif TransformerPolicy.hf_model_config.activation_function in ["gelu", "gelu_new"]:
self.mlp_act_func_type = ActivationFuncType.GELU
else:
raise ValueError("Unsupported activation function: {}".format(
TransformerPolicy.hf_model_config.activation_function))
else:
self.mlp_act_func_type = ActivationFuncType.ReLU # default
def get_hidden_heads(self):
return self.client_module.self_attn.embed_dim, \
self.client_module.self_attn.num_heads, \
self.client_module.self_attn_layer_norm.eps, \
DEFAULT_INTERMEDIATE_SIZE
def attention(self, enable_training=False):
qw = self.client_module.self_attn.q_proj.weight
qb = self.client_module.self_attn.q_proj.bias
kw = self.client_module.self_attn.k_proj.weight
kb = self.client_module.self_attn.k_proj.bias
vw = self.client_module.self_attn.v_proj.weight
vb = self.client_module.self_attn.v_proj.bias
qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training)
return qkvw, \
qkvb, \
self.client_module.self_attn.out_proj.weight, \
self.client_module.self_attn.out_proj.bias
def mlp(self, enable_training=False):
return self.client_module.fc1.weight, \
self.client_module.fc1.bias, \
self.client_module.fc2.weight, \
self.client_module.fc2.bias
def layernorm(self):
return self.client_module.final_layer_norm.weight, \
self.client_module.final_layer_norm.bias, \
self.client_module.self_attn_layer_norm.weight, \
self.client_module.self_attn_layer_norm.bias